FERMENTED DESERT LOCUST (Schistocerca gregaria) BY-PRODUCT MEAL AS A DIETARY PROTEIN SOURCE IN THE DIETS OF OREOCHROMIS NILOTICUS FINGERLINGS (Linnaeus, 1758)

Authors

  • A. O. AKINDE akindeao@funaab.edu.ng
  • W. O. ALEGBELEYE
  • F. C. THOMAS
  • I. ABDULRAHEEM
  • M. J. JIBRIL

Keywords:

Desert Locust Waste Meal, Oreochromis niloticus, Proximate composition, chitin content and amino acid

Abstract

The potentials of Fermented Desert Locust By-product (FDLBP) as a substitute for fishmeal in Oreochromis niloticus diet was evaluated in a 90 day feeding experiment. Four iso-nitrogenous (35.62%)
and iso-caloric (16.72 kJ/g) diets were formulated, in which FDLBP was added to supplement fishmeal
at three inclusion levels (15, 30 and 45%). Bacillus sustilus was used for the fermentation of the DLBP.
Each diet was fed to triplicate groups of 10 fish (8.23±0.24 g) twice daily at 3% body weight per day.
An intra-peritoneal challenge with Pseudomonas aeruginosa was carried out on the fish. Proximate
composition, chitin content and amino acid profiles of the meals were analyzed. Growth performance
in terms of Mean weight gain (MWG), Feed conversion ratio (FCR), Specific growth rate (SGR) and
feed utilization were calculated weekly. Blood samples were collected from each group for haematological and blood chemistry analyses. Data obtained were analysed using one way analysis of variance (ANOVA). The SGR (1.10±0.09-1.44±0.14 %) and FCR (1.60±0.10-2.22±0.18) were significantly (p<0.05) different among treatments in the group of fish fed control diet (diet 1) relative to others.
Fish fed FDLBP 45% (diet 4) had the least overall growth performance. Packed cell volume (24.2±
3.27-34.8±5.36 %), haemoglobin concentration (5.4±0.85-7.9±1.14 g/dl), red blood cells (1.86±0.24-
2.80±0.41) and white blood cell (10.74±1.05-11.52±2.09 ×1012/L) were significantly (p<0.05) different
among the groups. There were no significant difference (p>0.05) in the total protein (3.58±0.11-
4.42±1.41 g/dl) albumin (2.17±0.15-2.68±0.54 g/dl) and globulin (0.90±0.14-1.84±0.61 g/dl) levels in
the blood. This study concluded that FDLBP could be included in the diets of O. niloticus up to 45%
without negatively impacting on the fish growth and health status.

Author Biographies

A. O. AKINDE, akindeao@funaab.edu.ng

Department of Aquaculture and Fisheries Management, Federal University of Agriculture,
Abeokuta, Nigeria

W. O. ALEGBELEYE

Department of Aquaculture and Fisheries Management, Federal University of Agriculture,
Abeokuta, Nigeria

F. C. THOMAS

Department Veterinary physiology and Pharmacology, Federal University of Agriculture,
Abeokuta

I. ABDULRAHEEM

Department of Aquaculture and Fisheries Management, Federal University of Agriculture,
Abeokuta, Nigeria

M. J. JIBRIL

Department of Animal Science, Faculty of Agriculture, Usmanu Danfodiyo University Sokoto

References

Abu O.M.G., Sanni, L.O., Erondu, E.S.

and Akinrotimi O.A. 2010. Economic viability of replacing maize with whole cassava

root meal in the diet of Hybrid Cat-fish.

Agricutural Journal 1:1-5.

A d a m s , P , J a m e s , C , S p e a s

C. 2008. Rainbow trout (Oncorhynchus

mykiss) species and conservation assessment. Report prepared for Grand Mesa,

Uncompahgre, and Gunnison National Forests, Colorado, USA.

Adedeji, O.B. and Adegbile, A.F., 2011.

Comparative haematological parameters of

the bagrid catfish (Chrysichthys nigrodigitatus) and the African catfish (Clarias gariepinus) from Asejire Dam in southwestern Nigeria. Journal of Applied Sciences Research, 7(7),

pp.1042-1046.

Adeoye, Ayodeji A.; Yomla, Rungtawan;

Jaramillo-Torres, Alexander; Rodiles,

Ana; Merrifield, Daniel L.; Davies, Simon J. 2016. Combined effects of exogenous enzymes and probiotic on Nile tilapia

(Oreochromis niloticus) growth, intestinal

morphology and microbiome. Aquaculture,

(), 61–70.

Ahamefule F.O., Obua, B.E., Ukweni,

I.A., Oguike, M.A., and Amaka, R.A.

Haematological and biochemical pro

file of weaner rabbits fed raw or processed

pigeon pea seed meal based diets. African

Journal of Agricultural Research. 3(4): 315-319.

Akinnawo, O., and Ketiku, A.O. 2000.

Chemical composition and fatty acid profile

of edible larva of Cirina forda (westwood).

African Journal of Biomedical Research. 3, 93-96.

Akinwande A A, Moody F O, Sogbesan

O A, Ugwumba A A A and Ovie S O

Haematological response

of Heterobranchus longifilis fed varying dietary protein levels. Proceedings of the

th annual conference of the Fisheries Society of Nigeria Ilorin, 29th November –

rd December. 715-718.

Aladetohun, N. F., and Sogbesan, O. A.

Utilization of blood meal as a protein

ingredient from animal waste product in the

diet of Oreochromis niloticus. International

Journal of Fisheries and Aquaculture. 5(9): 234-

Alegbeleye W. O., Obasa, S. O., Olude,

O. O., Otubu, K., and Jimoh, W. 2012.

Preliminary evaluation of the nutritive value

of the variegated grasshopper (Zonocerus

variegatus L.) for African catfish Clarias

gariepinus (Burchell. 1822) fingerlings. Aquaculture Research. 43 (3): 412-420.

Anon, 1980. Guide to the Care and Use of

Experimental Animals. Vol 1. Canadian

Council of Animal Care. Ontario, Canada.

pp: 185–190.

AOAC 2006 Official Methods of Analysis.

th Edition, Association of Official Analytical Chemists, Gaithersburgs, MD.

AOAC. 1990. Official Method of Analysis of

the AOAC (W. Horwitz Editor Eighteen

Edition, Washington; D. C., AOAC.

APHA 1995 Standard methods for the examination of water and waste water, 19th

edn. NewYork, USA

Asgar M.A, Fazilah A, Huda N., Bhat R,

Karim A.A. 2010. Nonmeat protein alternatives as meat extenders and meat analogs.

Compr. Rev. Food Sci. Food Saf. 9:513–29.

Bagni M. and Archetti L. 2000 Effect of

long-term oral administration of an immunostimulant diet on innate immunity Sea

bass (Dicentrarchus labrax). Journal of Veterinary Medicine 47B, 745–751.

Belluco, S., Losasso, C., Maggioletti,

M., Alonzi, C., Paoletti, M., and Ricci,

A., 2013. Edible insects in a food safety and

nutritional perspective: a critical review.

Comprehensive Reviews in Food Science and Food Safety. 12, 296–313.

Benitez, L.V., 1989. Amino acid and fatty

acid profiles in aquaculture nutrition studies. Fish nutrition research in asia, pp.23-35.

Birth D. F. and G.H. Shculdt, 1982. Effects of the different sources and levels of

protein fed to Syrian hamsters on growth,

protein, utilization and selected blood proteins. Journal of the American Association for

Laboratory Animal Science 32: 617–630

.

Bittencourt, N. R.; Molinari, L. M.;

Scoaris, D. O.; Pedroso, R. B.; Celso–

Nakamura, C. V.; Ueda-Nakamura, T.;

Filho, B. A.; and Filho, B. P. D., 2003:

Haematological and biochemical values for

Nile tilapia Oreochromis niloticus cultured

in semi-intensive system Acta Scientiarum.

Biological Sciences Maringa ´ 25, 385–389.

Blaxhall, P. C and Daisley, K. W. 1973.

Routine haematological methods for use

with fish food. Journal of Fish Biology, 5:771-

Cha S.H., Lee J.S., Song C.B., Lee K.J.

and Jeon Y.J. 2008. Effects of chitosancoated diet on improving water quality and

innate immunity in the olive flounder,

Paralichthys olivaceus. Aquaculture. 278, 110–

Coles E. H. 1998. Pathology of experimentally infected rats with Cupper nicotinates.

th Ed. W B Saunders - Company, Philadelphia and London.

Collins S, Overland M, Skrede A, Drew

M. 2013. Effect of plant protein sources on

growth rate in salmonids: Meta-analysis of

dietary inclusion of soybean, pea and canola/

rapeseed meals and protein concentrates.

Aquaculture 400: 85-100.

Dautremepuits C., Paris-Palacios S.,

Betoulle S. and Vernet G. 2004. Modulation in hepatic and head kidney parameters

of carp (Cyprinus carpio L) induced by copper and chitosan. Comparative Biochemistry and

Physiology 137 C, 325–333.

Doumas B.T. 1994. Serum protein determination Clinical Chemistry, 69: 1087-1099.

FAO., 2015. In: Graziano da Silva, J. (Ed.),

The State of World Fisheries and Aquaculture, Opportunities and Challenges. FAO,

Rome, p. 3.

Fasakin, E.A., Balogun, A.M., and Ajayi,

O.O. 2003. Evaluation of full-fat and defatted maggot meals in the feeding of clariid

catfish Clarias gariepinus fingerlings. Aquaculture Research 34, 733–738.

A. O. AKINDE, W. O. ALEGBELEYE, F. C. THOMAS, I. ABDULRAHEEM, M. J. JIBRIL

J. Agric. Sci. & Env. 2023, 23(2):14-31

Fayaz Bhat Z, Fayaz H. 2011. Prospectus

of cultured meat—advancing meat alternatives. J. Food Sci. Technol. 48:125–40

Ferriz RA, Baigún CRM, Dominino

J. 2010. Distribution patterns and trophic

characteristics of salmonids and native inhabiting high altitude rivers of Pampa de

Achala region, Argentina. Neotropical Ichthyology 8: 851– 860.

Finke, M.D. 2007. Estimate of chitin in

raw whole insects. Zoo Biology 26, 105–115.

Fleurence J. 1999. Seaweed proteins: biochemical, nutritional aspects and potential

uses. Trends Food Sci. Technol. 10:25–28.

Fudge C.S. 1999. Laboratory Medicine:

Avian and Exotic Pets. WB Saunders, Philadelphia, USA.

Furukawa, A. and Tsukahara, H. 1966.

On the acid digestion method for the determination of chromic oxide as the index substance in the study of fish feed. Bulletine of

Japan Sociology and Sciencie Fish; 32:502-4.

Gatlin III, D.M., Barrows, F.T., Brown,

P., Dabrowski, K., Gaylord, T.G., Hardy, R.W., Herman, E., Hu, G., Krogdahl, Å., Nelson, R. and Overturf, K.,

Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture research, 38(6), pp.551-579.

Hackbath H, K Buron and G Schimansley, 1983. Strain difference in inbred rats:

Influence of strain and diet on haematological traits. Laboratory Animal. 17: 7–12.

Hansen, J.Ø., Penn, M., Øverland, M.,

Shearer, K.D., Krogdahl, Å., Mydland,

L.T. and Storebakken, T., 2010. High

inclusion of partially deshelled and whole

krill meals in diets for Atlantic salmon

(Salmo salar). Aquaculture, 310(1-2), pp.164-

Harikrishnan R., Kim J.S., Balasundaram

C. and Heo M.S. 2012. Immunomodulatory effects of chitin and chitosan enriched

diets in Epinephelus bruneus against Vibrio

alginolyticus infection. Aquaculture 326–329,

–52.

Houston, A. H., Dobric, N. and Kahurananga, R. 1996. The nature of hematological response in fish. Studies on rainbow

trout (Oncorhyncus mykiss) exposed to

stimulated winter, spring and summer conditions. Fish Physiology and Biochemistry,

Amsterdam, v. 15, n. 4, p. 339-347.

Howe, E.R., Simenstad, C.A., Toft, J.D.,

Cordell, J.R. and Bollens, S.M., 2014. Macroinvertebrate prey availability and fish diet

selectivity in relation to environmental variables in natural and restoring north San Francisco bay tidal marsh channels. San Francisco Estuary and Watershed Science, 12(1).

Hrubec, T. C., Cardinale, J. L., and

Smith, S. A., 2000. Haematology and plasma chemistry reference intervals for cultured

tilapia (Oreochromis hybrid). Veterinary Clinical Pathology 29, 7–12.

Kaya, M., Baran, T., Asan-Ozusaglam,

M., Cakmak, Y.S., Tozak, K.O., Mol, A.,

Mentes, A. and Sezen, G., 2015. Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta). Biotechnology and Bioprocess Engineering, 20: 168-179.

Klunder, H.C., Wolkers-Rooijackers, J.,

FERMENTED DESERT LOCUST (Schistocerca gregaria) BY-PRODUCT MEAL ...

J. Agric. Sci. & Env. 2023, 23(2):14-31

Korpela, J.M., Nout, M.R., 2012. Microbiological aspects of processing and storage

of edible insects. Food control, 26(2): 628-631.

Köhler, R., Kariuki, L., Lambert, C.,

Biesalski, H.K. 2019. Protein, amino acid

and mineral composition of some edible

insects from Thailand. Journal of Asia-Pacific

Entomology, 22(1): 372-378.

Kook, M.C., Cho, S.C., Hong, Y.H.,

Park, H. 2014. Bacillus subtilis fermentation for enhancement of feed nutritive value

of soybean meal. Journal of Applied Biological

Chemistry, 57(2): 183-188.

Kroeckel, S., Harjes, A.G., Roth, I.,

Katz, H., Wuertz, S., Susenbeth, A.,

Schulz, C., 2012. When a turbot catches a

fly: Evaluation of a pre-pupae meal of the

Black Soldier Fly (Hermetia illucens) as fish

meal substitute—Growth performance and

chitin degradation in juvenile turbot (Psetta

maxima). Aquaculture, 364: 345-352.

Krogdahl A, Penn M, Thorsen J, Refstie

S, Bakke A. 2010. Important antinutrients

in plant feedstuffs for aquaculture: an update on recent findings regarding responses

in salmonids. Aquacult Res 41: 333-344.

Lin, S., Mao, S., Guan, Y., Lin, X., Luo,

L., 2012. Dietary administration of chitooligosaccharides to enhance growth, innate

immune response and disease resistance of

Trachinotus ovatus. Fish & Shellfish Immunology, 32(5): 909-913.

Lindsay, G.J.H., Walton, M.J., Adron,

J.W., Fletcher, T.C., Cho, C.Y., Cowey,

C.B., 1984. The growth of rainbow trout

(Salmo gairdneri) given diets containing chitin and its relationship to chitinolytic enzymes and chitin digestibility. Aquaculture

: 315–334.

Mcdonald, G., Milligan, L. 1997. Ionic,

osmotic and acid-base regulation in stress.

In: Iwana, G. W.; Pickering, A. D.; Sumpter,

J. P.; Schreck, C. B. (Ed.). Fish stress and

health in aquaculture. Cambridge: University

Press. P. 119-144

Mehmood, M., Latif, M., Hussain, K.,

Gull, M., Latif, F., I Rajoka, M., 2015.

Heterologous expression of the antifungal βchitin binding protein CBP24 from Bacillus

thuringiensis and its synergistic action with

bacterial chitinases. Protein and Peptide Letters, 22(1): 39-44.

Misra C.K., Das B.K., Mukherjee S.C.

and Pattnaik P. 2006. Effect of long term

administration of dietary b-glucan on immunity, growth and survival of Labeo rohita

fingerlings. Aquaculture 255: 82–94.

Mok, W.K., Tan, Y.X., Lyu, X.M., Chen,

W.N., 2020. Effects of submerged liquid

fermentation of Bacillus subtilis WX‐17 using okara as sole nutrient source on the composition of a potential probiotic beverage. Food Science & Nutrition, 8(7): 3119-3127.

Nelson GC, Rosegrant M, Koo J, Robertson R, Sulser T, et al. 2009. Climate

Change: Impact on Agriculture and Costs of

Adaptation. Food Policy Report. Washington, D.C.: Int. Food Pol. Res. Inst.

NRC. 1993. Nutrient requirements of fish.

National academy press, Washington,

DC.,USA., ISBN-13: 9780309048910, p 114

Nwanna, L., Fagbenro, O., Olanipekun,

S. 2004. Evaluation of tamarind (Tamarindus

indica) seedmeal as a dietary carbohydrate

for the production of Nile tilapia OreoA. O. AKINDE, W. O. ALEGBELEYE, F. C. THOMAS, I. ABDULRAHEEM, M. J. JIBRIL

J. Agric. Sci. & Env. 2023, 23(2):14-31

chromis niloticus (L). Animal Research International 1(3): 164 – 168.

Ogunji J.O., Nimptsch J., Wiegand C.,

and Schulz C. 2007. Evaluation of the influence of housefly maggot meal (magmeal)

diets on catalase, glutathione S-transferase

and glycogen concentration in the liver of

Oreochromis niloticus fingerling. Comparative Biochemistry and Physiology, A: Comparative

Physiology 147: 942–947.

Ogunji, J.O. 2004. Alternative protein

sources in diets for farmed tilapia. Animalscience.com Reviews 2004 No. 13; CAB

International Publishing (Oxford, UK). Nutrition Abstracts and Reviews: Series B 74(8),

N – 32N

Onifade A. A., O. O. Tewe, 1993. Alternative tropical energy feed performance in

rabbit diets: growth performance, diets digestibility and blood composition. World

Rabbit Science 1:17–24.

Paoletti M.G. 2005. Ecological Implications of Minilivestock: Potential of Insects,

Rodents, Frogs and Snails. Enfield, NH:

Science. 648 pp

Reinhold R. R. 1988. Serum albumin.

Clinical Chemistry, 45: 1498-1504.

Reyes, M., Rodríguez, M., Montes, J.,

Barroso, F.G., Fabrikov, D., Morote, E.

and Sánchez-Muros, M.J., 2020. Nutritional and growth effect of insect meal inclusion on seabass (Dicentrarchuss labrax)

feeds. Fishes, 5(2), p.16.

Rust, M.B., 2002. Nutritional physiology.

In: Halver, J.E., Hardy, R.W. (Eds.), Fish

Nutrition. The Academic Press, New York,

USA, pp. 368–446.

Sánchez-Muros M., De Haro C., Sanz

A., Trenzado C. E., Vilareces S., Barroso

F. G. 2016. Nutritional evaluation

of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquaculture Nutrition 22: 943– 955.

Sanchez-Muros, M.-J., Barroso, F.G.,

Manzano-Agugliaro, F., 2014. Insect meal

as renewable source of food for animal feeding: a review. J. Clean. Prod. 65, 16–27.

Sanders D.H. 1990 Statistic: A fresh approach. 4th edition. McGraw-Hill inc., Singapore

Sogbesan A. O., Ekundayo, T. M. 2014.

Cost benefits of fermented groundnut shell

meal as supplemented feed in the diets of

Clarias gariepinus fingerlings. Nigerian Journal

of Fisheries and Aquaculture 2(2): 30 – 41.

Songsiriritthigul, C., Lapboonrueng, S.,

Pechsrichuang, P., Pesatcha, P. and

Yamabhai, M., 2010. Expression and characterization of Bacillus licheniformis chitinase (ChiA), suitable for bioconversion of

chitin waste. Bioresource Technology, 101(11):

-4103.

Tavares-Dias, M., Frasca ´scorvo, C. M.,

Novato, P. F. C., and Moraes, F. R., 2000:

Hematological characteristics of hybrid Florida red tilapia, Oreochromis urolepis hornorum · O. mossambicus under intensive

rearing. In: K. Filho, J. C. Fitzsimmons (eds),

Proceedings From The Fifth International

Symposium On Tilapia Aquaculture, Vol.

Rio de Janeiro, pp. 533–541.

Van Huis, A., 2013. Potential of insects as

food and feed in assuring food security. Annual review of entomology 58: 563-583.

FERMENTED DESERT LOCUST (Schistocerca gregaria) BY-PRODUCT MEAL ...

J. Agric. Sci. & Env. 2023, 23(2):14-31

Wang, D., Bai, Y.Y., Li, J.H. and Zhang,

C.X., 2004. Nutritional value of the field

cricket (Gryllus testaceus Walker). Insect Science, 11(4): 275-283.

Watanabe, T., Ariga, Y., Sato, U., Toratani, T., Hashimoto, M., Nikaidou, N.,

Kezuka, Y., Nonaka, T. and Sugiyama,

J. 2003. Aromatic residues within the substrate-binding cleft of Bacillus circulans chitinase A1 are essential for hydrolysis of

crystalline chitin. Biochemical Journal, 376(1):

-244.

Whitley, S.N. and Bollens, S.M., 2014.

Fish assemblages across a vegetation gradient in a restoring tidal freshwater wetland:

diets and potential for resource competition. Environmental biology of fishes 97: 659-674.

Yusuf, N. D., Ogah, D. M., Hassan, D.

I., Musa, M. M. and Doma, U. D., 2008.

Effect of decorticated fermented Prosopis

seed meal (Prosopis africana) on growth performance of broiler chicken. International Journal of Poultry Science 7(11): 1054-1057.

Zhang, Y., Zhou, Z., Liu, Y., Cao, Y.,

He, S., Huo, F., Qin, C., Yao, B. and

Ringø, E., 2014. High-yield production of a

chitinase from Aeromonas veronii B565 as a

potential feed supplement for warm-water

aquaculture. Applied microbiology and biotechnology, 98: 1651-1662.

Downloads

Published

2024-03-26

Issue

Section

Original Manuscript