COMPARATIVE ASSESSMENT OF CARBON STORAGE IN BIOMASS AND SOIL ORGANIC CARBON IN TEAK PLANTATION OF DIFFERENT AGES IN YEWA NORTH, OGUN STATE, NIGERIA

Authors

  • W. A. SALAMI Department of Fisheries, Forestry and Wildlife, Olabisi Onabanjo University, Ayetoro, Ogun State, Nigeria
  • O. O. GABRIEL Department of Fisheries, Forestry and Wildlife, Olabisi Onabanjo University, Ayetoro, Ogun State, Nigeria
  • O. B. BANJO Department of Fisheries, Forestry and Wildlife, Olabisi Onabanjo University, Ayetoro, Ogun State, Nigeria
  • O. A. OGUNTADE Department of Crop Production, Olabisi Onabanjo University, Ayetoro, Ogun State, Nigeria
  • R. O. ADEWALE Department of Fisheries, Forestry and Wildlife, Olabisi Onabanjo University, Ayetoro, Ogun State, Nigeria
  • C. O. ADEOFUN Department of Environmental Management & Toxicology, Federal University of Agriculture, Nigeria
  • A. O. AKINGBADE African Regional Institute for Geospatial Information Science and Technology Obafemi Awolowo University, Ile-Ife Osun State, Nigeria

Keywords:

Carbon stock, Teak plantation, aboveground carbon, Bulk density, Soil organic carbon, soil depth

Abstract

Tree act as a sink for CO2 by fixing carbon during photosynthesis and is a vital tool to alleviate climate change through CO2 absorption from the atmosphere. This study was conducted to assess carbon storage in tree biomass and soil carbon stock in Teak (Tectona grandis) plantations of different age series (5, 9 and 12 years). Data were collected on diameter at breast height (Dbh) and total height (TH) of all the trees in a sample plot of 1000 m2 in each plantation of age series. Carbon stored was evaluated based on tree growth variables, soil parameters and above ground biomass. Topsoil and subsoil (0-15 and 15-30 cm) samples collected from three sites were analyzed for organic carbon (OC) following standard methods.  Mean diameter at breast height were 67.11, 45.42, and 21.35 cm ha-1 and the mean volumes were 0.39, 0.16 and 0.02 m3ha-1 for 12, 9 and 5 years old were significant different (p<0.05). The highest value of total soil organic carbon (TSOC) was 8464.65 t.ha-1 for the 12year-old followed by 4430.25 t.ha-1 for 9 years old stand and 3004.95 t.ha-1 for 5years old were significant different (p<0.05) respectively. The total soil organic carbon per hectare were higher for the older than the younger Tectona grandis stand (8464.65 t.ha-1, 4430.25 t.ha-1 and 3004.95 t.ha-1) were significant different (p<0.05). Total carbon storage by soil and in biomass (CSB) was 15899.85 and 49.31 tons.ha-1 and total carbon accumulated by the plantation under investigation was in the order of 12 years old > 9 years old > 5 years old, respectively. The results of this study confirm that teak has good potentials to offer carbon sequestration through its soil and accumulate large amount of biomass carbon. The plantation ownership should be guided properly on the management activities such as thinning, pruning and weeding operation as well as indiscriminate removal of individual caused by anthropogenic activities should be avoided.

 

 

 

References

Akindele, S. O. 1991. Development of a site index equation for teak plantations in Southwestern Nigeria. Journal of Tropical Forest Science, 162-169.

Alexandrov, G.A. 2007. Carbon Stock Growth in a Forest Stand: the Power of Age. Carbon Balance and Management 2(4): 1–5. http://dx.doi.org/10.1186/1750-0680-2-1

Amponsah, Meyer, W. 2000. Soil characteristics in teak plantations and natural forests in Ashanti region, Ghana. Communications in Soil Science and Plant Analysis, 31(3–4):355–373.

Amusa, T.O., Adedapo, S. M. 2021. Growth and yield characteristics of Tectona grandis (Linn.F.) in different age series at University of Ilorin, North Central Nigeria. Forestist 71(3): 127-133.

Black, C. A., Evans, D. D., White, J. L., Ensminger, L. E., Clark F. E. 1934. Methods of Soil Analysis Part. II American Society of Agronomy, Madison, Wisconsin, USA pp1367–1378

Blake G. R., Hartge, K. H. 1986. Bulk density. In Methods of Soil Analysis, part 1. Physical and Mineralogical Methods, Klute A (ed). Agronomy Monograph no. 9 (2nd edn). Soil Science Society of America; 363-375.

Brown, S. 1997. Estimating Biomass and Biomass Change of Tropical Forests: A primer. Food and Agriculture Organization of the United Nations, Rome.

Cao, J. X., Wang, X. P., Tian, Y., Wen, Z. Y., Zha, T. S. 2012. Pattern of carbon allocation across three different stages of stand development of a Chinese pine (Pinus tabulaeformis) forest. Ecological Research. 27(5):883–892.

Chaudhari P. R., Ahire D. V., Ahire V. D., Chkravarty M, and Maity S. 2013. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. International Journal of Scientific Research Publication 3(2):1–8

Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G. and Zanne, A. E. 2009. Towards a worldwide wood economics spectrum. Ecology Letters. 12 (4): 351-366.

Chen, GS; Yang, ZhiJie; Gao, Ren; Xie, JinS; Guo, JFen; Huang, ZhiQun; and Yang, YuS. 2013. Carbon storage in a chronosequence of Chinese fir plantations in southern China. Journal of Forest Ecology and Management. 300: 68‑76. http://dx.doi.org/10.1016/j.foreco.2012.07.046

Dinwoodie, J. M. 1981. Timber its nature and behaviour. Van Nosttrand Reinhold. The University of California. pp.190

Ellert, B. H., Janzen, H. H., VandenBygaart, A. J., Bremer, E. 2008. Measuring Change in Soil Organic Carbon Storage. In: Carter M.R. and Gregorich, E.G., Eds., Soil Sampling and Methods of Analysis, 2nd Edition, CRC Press Taylor & Francis, Boca Raton, FL, USA. Chapter 3. (A321-A352).

Eshaghi, R. J., Gelare, V., Osman, S., Hosein, M. 2018. Effects of anthropogenic disturbance on plant composition, plant diversity and soil properties in oak forests, Iran. Journal of Forest Science.64:358–70.

Fonseca, W., Rey Benayas, J. M., Alice, F. E. 2011. Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. Forest Ecology and Management. 2011; 262:1400–1408. doi: 10.1016/j.foreco.2011.06.036. Forestry Paper-134), FAO, United Nations, Rome.

Gebeheyu, G., Soromessa, T. 2018. Status of soil organic carbon and nitrogen stocks in Koga watershed area, Northwest Ethiopia. Agriculture and. Food Security. 7, 1-10

Gera, M. 2012. Poplar culture for speedy carbon sequestration in India: a case study from Terai region of Uttarakhand. Envis Forestry Bulletin 12: 75–83.

Gorgoso-Varela, J.J., Rojo-Alboreca, A. 2014. Short communication: A comparison of estimation methods for fitting Weibull and Johnson’s SB functions to pedunculate oak (Quercus robur) and birch (Betula pubescens) stands in northwest Spain. Forest Systems 23(3): 500–505.

Guidi, C., Vesterdal, L., Gianelle, D., Rodeghiero M 2014. Changes in soil organic carbon and nitrogen following forest expansion on grassland in the Southern Alps. For Ecol Manag 328: 103–116. doi:10.1016/j.foreco.2014.05.025

Haninec, P., Madera, P., Smola, M., Habrova, H., Senfeldr, M., Uradnicek, L., Rajnoch, M., Pavlis, J., Cafourek, J., Novosadova, K., Smudla, R. 2017. Assessment of teak production characteristics using 1 m spacing in a plantation in Nicaragua. Bois et Forets des Tropiques, 330: 37-47.

Hetland, J., Yowargana, P., Leduc, S., Kraxner F. 2016. Carbon-negative emissions: systemic impacts of biomass conversion: a case study on CO2 capture and storage options. International Journal of Greenhouse Gas Control 49:330–342.

Husch, B., Beers, T. W., Kershaw, J. A. 2003. Forest Mensuration. (4th ed.). Hoboken, NJ: Wiley & Sons. New York.

Ige, P. O. 2018. Above Ground Biomass and Carbon Stock Estimation of Gmelina arborea (Roxb.) stands in Omo Forest Reserve, Nigeria. Journal of Research in .Forestry, Wildlife and Environment. 10(4): 71-80

Ige, P. O., Akinyemi, G. O. 2015. Site quality assessment for Tectona grandis, Linn. f Plantations in Gambari forest reserve. Nigeria. Journal of Forestry Research and Management, 12: 58-67.

Intergovernmental Panel on Climate Change (IPCC) 2000. Land, Land-use Change, and Forestry: A Special Report of the Intergovernmental Panel on Climate Change. Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ, editors. Cambridge, Cambridge University Press, UK. pp. 375.

Intergovernmental Panel on Climate Change (IPCC) 2006. Revised IPCC guidelines for national greenhouse gas Inventories. Programme [Eggleston H.S., L. Buenia, K. Miwa, T. Ngara, and K. Tanabe (eds)]. Institute of Global Environmental Strategies (IGES), Kanagawa, Japan, 20 pp.

Jew, E. K. K., Dougill, A. J., Sallu, S. M., O’Connell, J., Benton, T. G. 2016. Miombo woodland under threat: consequences for tree diversity and carbon storage. Forest. Ecology. Management. 361:144-153

Jinenze J.J., Lorenz, K., Lal, R. 2011. Organic carbon and nitrogen in soil particle-size aggregates under dry tropical forests from Guanacaste, Costa Rica-implications for within-site soil organic carbon stabilization. Catena.; 86:178-91

Kaul, M., Mohren, G. M., Dadhwal, V.K. 2010. Carbon storage and sequestration potential of selected tree species in India. Mitigation and Adaptation Strategies for Global Change, 15: 489-510.

Law, B. E., Sun, O. J., Campbell, J., Van Tuyl, S., Thornton, P. E. 2003. Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Global Change Biology2003;9 (4):510–524. doi: 10.1046/j.1365-2486.2003.00624.x.

Lu, N., Liski, J., Chang, R. Y., Akujarvi, A., Wu, X., Jin, T. T. 2013. Soil organic carbon dynamics of black locust plantations in the middle Loess Plateau area of China. Biogeosciences, 10, 7053–7063.

Lugo, A. E., Cuevas, E., Sanchez, M.J. 1990. Nutrient and mass in litter and top soil of ten tropical tree plantations. Plant Soil: 124,262±280

Luizao, F.J., Schubart, H.O.R. 1987. Litter production and decomposition in a terra-firme forest of central Amazonia. National Agricultural Library United States. 43(3) 259-269.

Luyssaert S., Schulze, E. D., Börner, A., Knohl, A., Hessenmöller, D., Law, B. E., Ciais, P., Grace, J. 2008. Old-growth forests as global carbon sinks. Nature 455, 213–215. doi: 10.1038/nature07276, ISSN: 0028-0836.

Martin, J. L., Gower, S. T., Plaut, J., Holmes, B. 2005. Carbon pools in a boreal mixed wood logging chronosequence. Global Change Biology 11: 1883-1894. doi: 10.1111/j.1365-2486.2005.01019.x.

Mwangi, R. A. 2015. Volume and biomass estimation models for Tectona grandis grown at Longuza forest plantation, (thesis). Morogoro, Tanzania: Sokoine University of Agriculture; 2015

Nigerian Standard Code of Practice -NCP 1973. Nigerian Standard Code of Practice. Times press, Apapa, Nigeria. Pp 71.

Njar, G. N., Iwara, A. I., Ekukinam, U. E., Deekor, T.N., Amiolemen, S.O. 2011. Organic Carbon and Total nitrogen status of soils under rubber plantation of various ages, South-South Nigeria. Journal of Environmental Sciences and Resource Management, 3: 1- 13

Nowak, D.J., Greenfield, E.J., Hoehn, R.E., Lapoint, E. 2013. Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution: 178: 229–236. http://dx.doi.org/10.1016/j.envpol.2013.03.019

Nwoboshi, L. C. 1982. Tropical Silviculture. Ibadan University Press, Ibadan, p. 333.

Ogawa, H., Yoda, K., Ogino, K., Kira, T. 1965. Comparative Ecological Studies on Three Main Types of Forest Vegetation in Thailand II. Plant Biomass. Nature Life Southeast Asia, 4: 49–80.

Ola-Adams, B. A. 1990. Influence of spacing on growth and yield of Tectona grandis Linn. F. (Teak) and Terminalia superba Engl. & Diels (Afara). Journal of Tropical Forest Science: 2(3), 180-186.

Ouyang, S., Xiang, W., Gou, M., Lei, P., Chen, L., Deng, X. 2018. Variations in soil carbon, nitrogen, phosphorus and stoichiometry along forest succession in Southern China. Biogeosci. Discuss, 10, 1874 (2018). doi.org/10.5194/bg-2017-40

Oyebade, B. A., Osho, J. S. A., and Adesoye, P. O. 2014. Development of Site Index Equation and Curves for Site Quality Assessment of Pinus caribea Monoculture Plantations in Southwestern Nigeria. Journal of Forest and Environmental Science, 30(4), 315-321.

Poeplau, C., Don, A. 2013. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189–201. doi:10.1016/j.geoderma.2012.08. 003

Pandey, D., Brown, C. 2000. Teak: a global overview. Unasylva 51(201):3-12

Pearson, T., Walker, S. 2005. Brown Source book for land use, land use change and forestry projects Winrock International and the Bio carbon fund of the World Bank (2005) pp57.

Polish Soil Classification (SystematykaGlebPolski), 2011. Roczniki Gleboznawcze - Soil Science Annual, 62(3): 1-193 (in Polish with English summary).

Pussinen, A., Karjalainen, T., M¨akip¨a¨a, R., Valsta, L., Kellom¨aki, S. 2002. Forest carbon sequestration and harvests in Scots pine stand under different climate and nitrogen deposition scenarios. Forest. Ecology Management 158(1-3):103-115

Ravindranath, N. H., Somashekhar, B. S., Gadgil, M. 1997. Carbon flow in Indian forests. Climatic Change. 35: 297-320.

Rodeghiero, M., Heinemeyer, A., Schrumpf, M., Bellamy, P. 2009. Determination of changes in soil carbon stocks, in: Soil Carbon Dynamics: An Integrated Methodology, edited by: Kutsch, W. L., Bahn, M., and Heinemeyer, A., Cambridge University Press, Cambridge, 49–75.

Sahu, C., Basti, S., Sahu, S. K. 2016a. Carbon dioxide evolution and enzymatic activities of soil under different land use practices located near Bhawanipatna town in Odisha, India. Fresenius Environmental Bulletin, 25, 5432-5439.

Sang, P. M., Lamb, D., Bonner, M., Schmidt, S. 2013. Carbon sequestration and soil fertility of tropical tree plantations and secondary forest established on degraded land. Plant and Soil: 362:187–200.

Sedjo, R. A. 2006. GMO trees: Substantial promise but serious obstacles to commercialization. Silvae Genetica: 55(6), 241-292

Seedre M., Kopáček J., Janda P., Bače R., Svoboda M. 2015. Carbon pools in a montane old-growth Norway spruce ecosystem in Bohemian Forest: effects of stand age and elevation. Forest Ecology and Management 346:106–113.

Shamaki, S. B., Akindele, S. O., Isah, A. D. 2011. Development of volume equations for teak plantation in Nimbia Forest Reserve in Nigeria using dbh and height. Journal of Agriculture and Environment, 7(1), 71-76.

Singh, P., Benbi, D. K. 2020b. Modeling soil organic carbon with DNDC and RothC models in different wheat-based cropping systems in north-western India. Communication in. Soil Science and plant analysis, 51(9) 1184-1203.

Subedi, S. S., Pandey, A., Pandey, E. B., Rana, S., Bhattarai, T. R., Banskota, S., Charmakar, R., Tamrakar 2010. Forest carbon stock measurement: guidelines for measuring carbon stocks in community-managed forests; Asia Network for Sustainable Agriculture and Bioresources (ANSAB), Federation of Community Forest Users, Nepal (FECOFUN), International centre for Integrated Mountain Development (ICIMOD) and Norwegian Agency for Development Cooperation (NORAD). pp. 69.

Swift, M. J., Heal, O. W., Anderson, J. M. 1979. Decomposition in Terrestrial ecosystems: studies in ecology. Vol. 5. Oxford, U.K: Blackwell Scientific Publications

Taylor, A.R., Wang, J.R., Chen HYH. 2007. Carbon storage in a chronosequence of red spruce (Picearubens) forests in central Nova Scotia, Canada. Canadian Journal of Forest Research. 37(1):2260–2269. doi: 10.1139/x07-080.

Terakunpisut, J., Gajaseni, N., Ruankawe, N. 2007. Carbon sequestration potential in above-ground biomass of Thong PhaPhum National Forest, Thailand. Applied Ecology and Environmental Research: 5(2):93-102.

Trumper, K., Bertzky, M., Dickson, B., van der Heijden, G., Jenkins, M., Manning, P. 2009. The natural fix? The role of ecosystems in climate mitigation. A UNEP rapid response assessment. Cambridge, UK, United Nations Environment Programme, UNEPWCMC.p 65. Available at www.unep.org/pdf/BioseqRRA_scr.pdf

Von Wulfing, W.H.E. 1932. Het perkonderzoek van A.E.J. Bruinsma; schattingstabellen vor djatiplantsoenen, Tectona grandis L.f. (Yield tables for Java teak plantations). TECTONA, Part 25. Indonesia Forest Research Institute. Special Publication. No. 30a.

Vucetich, J.A., Reed, D.D., Breymeyer, A., Deg´orski, M., Mroz, G.D., Solon, J., Roo-Zielinska E., Noble, R. 2000. Carbon pools and ecosystem properties along a latitudinal gradient in northern Scots pine (Pinus sylvestris) forests. Forest. Ecology and Management 136:135–145

Walkley, A., Black, I.A. 1934. An examination of Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid tritation method. Soil Science: 37:29-38.

Wang, H., Liu, S.R., Mo, J.M., Wang, J.X., Makeschin, F., Wolff, M. 2013. Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China. Ecological Resources 25:1071–1079.

Wang, Q.K., Wang, S.L., Zhong, M.C. 2013. Ecosystem carbon storage and soil organic carbon stability in pure and mixed stands of Cunning hamialanceolata and Micheli amacclurei. Plant Soil: 370: 295–304. Doi: 10.1007/s11104-013-1631-2

Yang, J. C., Huang, J. H., Tang, J. W., Pan, Q. M., Han, X. G. 2005. Carbon sequestration in rubber tree plantations established on former arable lands in Xishuangbanna, SW China. Acta Phyto-ecologica Sinica, 29: 296-303.

Yihenew, G.S., Getachew, A. 2013. Effects of different land use systems on selected physico-chemical properties of soils in Northwestern Ethiopia. Journal of Agricultural Science 5:114–117

Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Millwe, R. B., Swenson, N. G., Wiemann, M. C., Chave, J. 2009. Global wood Density Database. Dryad identifier http://hdl.handle.net/10255/dryad.235. Dryad Digital Repository. Doi:10.5061/dryad.234.

Downloads

Published

2023-01-09

Issue

Section

Original Manuscript