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The aim of all n-dimensional minimization 
techniques is to find a, the smallest non-
negative value of a, for which the function 
 

                             
attains a local minimum. 
        (1) 
If the original function f(x) is expressible as 
an explicit function of x i  (i = 1, 2, …, n), we 
can readily write expression (1), for any    

specific vector s and then solve  to 
obtain a in terms of x and s. However, in 
many practical problems, the function F(a) 
cannot be expressed explicitly in terms of a. 
In such cases the interpolation method can 
be used to find the value of a. 
 
The Fibonacci and Coggins search methods 
(two-point search methods) can be used to 
solve unconstrained problems. The two 
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ABSTRACT 
A computational procedure called Coggins-Fibonacci method for the optimization of unconstrained 

functions in  is developed. The method is found to be more efficient and converges faster than 
either of the conventional Coggins or Fibonacci search methods. 
 
Keywords: Search direction, Fibonacci search, Coggins method. 
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INTRODUCTION 
Many search methods for unconstrained 
problems in optimization require searching 
for the minimal (maximal) point in a speci-
fied direction. These methods can be classi-
fied into two broad categories as direct 
search method and descent methods. The 
direct search methods require only objective 
function evaluation and do not use partial 
derivatives of the function in finding the 
minimum or maximum and are hence called 
the non-gradient methods. All the uncon-
strained minimization or maximization 
methods are iterative in nature and hence 
they start from initial trial solution x0 and 
proceed towards the optimum point in a 
sequential manner. It is important to know 
that all the optimization methods differ 
from one another only in the method of 
generating new point xi+1 from xi and in 
testing the point xi+1 for optimality.  
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methods are efficient, requiring few func-
tions evaluations and use unequally spaced 
points to bracket the minimum, followed by 
successive quadratic approximations, which 
result in rapid convergence to the optimum. 
 
FIBONACCI SEARCH METHOD 
This search technique is considered to be 
the best among the minimax methods 
(Foulds, 1981). It has the largest interval 
reduction of all of the procedures 
(Wallstreetcosmos.com, 2008). Unimodality 
is assumed and it requires that the number 
of experiments be specified in advance, 
which may be inconvenient. The deficiency 
has led to the development of other meth-
ods such as golden section search, lattice 
search, even block, odd block, golden block 
search and others. Walsh (1985) defined 
Fibonacci sequence {Fi} as, 
 

   (2) 

Fibonacci sequence was first discovered by 
Leonardo of Pisa (1175-1230) during an 
investigation of the rabbit population prob-
lem. It can be used to find optimal point of 
a function of one-variable even if the func-
tion is not continuous. 

 
Fibonacci search direction 

Suppose  brackets a required    

minimum of f(x), the points ,  are 
 
 

                                                                (3) 
symmetrically placed in this interval so that 
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By computing ,  
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as the new bracket or   

giving  as the new bracket where 
 

  
 
If N is the total number of function evalua-
tions to be performed, the test point for the 
ith iteration are  

  and  

 
     

COGGINS SEARCH METHOD 
The method is a combination of a single 
variable technique proposed by Davies et al. 
(1974) and Powell. The algorithm proceeds 
as follows [10 and 13]: 
 
i. A starting point is chosen and the objec-

tive function evaluated. 
ii. The independent variable is incremented 

a distance and the objective func-
tion evaluated again. If a function im-
provement is obtained, the step size is 
doubled for the next function evaluation. 
If a function improvement is not ob-
tained on the first step, the direction is 
reversed and the next point located a 

distance  from the starting point. 
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multi-variables objective function based on 
the formalism of the one variable method 
while Bamgbola (2004) gave the theoretical 
backup. On Bamgbola (2004), taking note of 
the importance of the search direction which 
was omitted in [18] a better result was ob-
tained. The details of the generalization and 
the algorithm can be found in Subramaniam 
(1994). 
 

COGGINS-FIBONACCI 
METHOD 

The classical search method, which obtains 
the optimum of a given function, requires 
several functions evaluation. In order to have 
fewer functions evaluation in obtaining the 
optimum, the Coggins-Fibonacci method 
was suggested for single variable and multi-
variable optimization.  
 
The original formulations of Fibonacci and 
Coggins methods take care of optimization 
in one dimension. For extension to higher 
dimensions, there are many different direc-
tions that can be explored leading possibly to 
different results Bunday, 1984. 

The inclusion of Fibonacci search direction 
in place of Coggins search direction makes 
Coggins-Fibonacci to have a better and 
faster convergence than Coggins method as 
illustrated in the accompanying numerical 
examples. 
 
Algorithm for single variable Coggins-
Fibonacci method 
i. A starting point is chosen and the objec-

tive function evaluated. 
ii. A suitable trial step length ai is found 

along the directions si to obtain a new 

point where  iiii sxx 1

i. After the first step, the step size is dou-
bled if a function improvement is ob-
tained and halved if a worse function 
evaluation is obtained. 

ii. When a local optimum is encountered, 
the procedure will yield three points 

 straddling the opti-

mum. An additional point  is then 

located  where  is 
the current step size. The best three 

points are then retained (say  
iii. A quadratic function is then curve fitted 

to the three retained points. The opti-
mum x*  is then located by setting 

 

    so  that   
 

                              (5) 
 
The objective function at x* is then com-
pared with the best previous point subject 

to a convergence limit    
 
vi.  If the above criterion is satisfied, the   
procedure stops. If not, the worst point is 
replaced by x* and a new quadratic surface 
fitted and the local optimum obtained.  
This process is repeated until the conver-
gence criterion is satisfied. 
 
Extended Coggins method 
Even though Coggins method was devel-
oped for one variable objective function, 
(Reju, 2991) and Subramaniam et al. (2002) 
have generalized the algorithm to that of 
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surface fitted and the local optimum 
obtained. 

 
This process is repeated until the conver-
gence criterion is satisfied. 
 
Algorithm for multi-variables Coggins-
Fibonacci method 
The algorithm to find the optimum value of 
a function with more than one variable is 
listed in the steps here. As an illustration, 
consider an n-dimensional case. 
i. The objective function is evaluated using 

the initial value  
and              the trial value 

. 
    
ii. The third point 

 is obtained as 

                                                                 (6) 

where,  is the step length, Fi is 
found by specifying the initial trial step 
length ε and the boundary values (a, b) to 
ascertain the starting value of the Fibonacci 
sequence {Fi}. 
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 and  (Kahya, 
2006 and Subasi et al., 2004) 

iii. After the first step, the step size, ε, and 
the difference between the initial values 
are used to determine the Fibonacci se-
quence. 

iv. When a local optimum is encountered, 
the procedure will yield three points 

 straddling the opti-

mum. An additional point  is then 

located by  

where  is the current step size. The 
best three points are then retained (say

. 
v. A quadratic equation is then curve fitted 

to the three retained points. The opti-
mum location x* is obtained by setting 

 so that 

 
 The objective function at x* is then 
 compared with the best previous point 
 subject to a convergence limit       

      
vi. If the above criterion is satisfied, the 

procedure stops. If not, the worst point 
is replaced by x* and a new quadratic 
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iii. The new value and the initial values  are used to evaluate the function 
as the first iteration.  

iv When a local optimum is obtained, the procedure will yield three points say 
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straddling the optimum. Then an additional point    is located 

using (Foulds, 1981). The best three points say  are retained. 
 
v. A quadratic equation is then curve-fitted to the three retained points and the optimum 

point  is located by setting 

     
  (Bamigbola, 2004) 
 

vi. The values of the objective function at  are compared 
with the best previous point subject to the convergence criteria 

 where,  and 

 are the best previous points. If the inequality is satisfied, the procedure stops 

otherwise, the worst points are replaced by and a new quadratic surface 
is fitted and local optimum obtained. 

 
Computational Examples 
To illustrate the computational details as well as checking the workability and efficiency of 
our proposed method, the method was tested on various problems of various dimensions 
and the performance compared with some other known unconstrained minimization meth-
ods. The numerical examples used are the classical test cases used by earlier authors. 
 
Minimize 

1   Starting values are (0, 0) 
             Problems 5.2 – 5.5 are from [4]. 

2  
Starting values: (1, 0.5) 

3 Gottfried function: Starting values are (0.5, 0.5) 

   

4 Sisser’s function: Starting values are (1, 0.1)    
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5 Rosenbrock’s function:      
               Starting values are (-1.2, 1) 

6 Variably dimensioned function (Ibiejugba et al., 1991) 

   
where n is the number of variables in the problem and  

  

The initial values are . The minimizer x* = (1, 1, …, 1) with f(x*) = 0. The 
iterations results are shown in table 5 for n = 4 and n = 12. 
 
7.  Numeric font learning problem (Magoulas et al., 1997); (Sperduti, 1993). 
It is a well-known fact in the neural network field (NNF) (Haykij, 1994) that the rapid com-
putation of the resulting global minimum problem is a difficult task. This is because the 
number of network variables is large and the corresponding nonconvex multi modal objec-
tive function possesses multitudes of local minima and has flat regions that are broad and 
adjoined with narrow steep ones. Due to the special characteristics of these problems, glob-
ally convergent schemes are required. Another problem associated with this class of prob-
lems is that of the choice of starting values. As very small initial values lead to very small 
corrections of the variables which may results in undesired local minimum so also can large 
initial values speed up the learning process and may again lead neurons to saturation and 
thus generate undesired results too. A way out is to choose the starting values between 
(xmin, xmax) (More et al., 1981) where xmin = -xmax. In this example, we shall use the interval (-
1, +1) choosing 1000 starting points randomly from this interval to rest our scheme. 
 
This example involves the training of a multilayer feedforward neural network (FNN) with 
460 variables for recognizing 8´8 pixel machine that prints numerals from 0 to 9. There are 
64 input neurons and 10 output neurons representing 0 - 9. The numerals are in the form 

of a finite sequence  of input-output pairs  where  are the 

binary input vectors in  determining the 8´8 binary pixel while  are the binary out-

put vectors in  for . The corresponding objective function is,  
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The iteration is terminated when .  
 

The numerical solutions obtained by implementing the Coggins-Fibonacci algorithm on 
these problems compared with other popular methods using Matlab 6.5 are shown in Ta-
bles 1 – 7. 

410)( xf
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Method x1* x2* f(x1*, x2*) No. of iterations 
Exact 2.5 2.5 0 - 
Powell  2.5 2.5 0 5 
Coggins  2.5 2.5 0 3 
Proposed method 2.499999993 2.499999993 0 1 

Table 2: Computational results for problem 2 

Method x1* x2* f(x1*, x2*) No. of iterations 

Exact 0.205658567 0.479863303 3733.756452 - 

Subramaniam  0.205623709 0.479862599 3733.756452 492 

Nelder  0.205188700 0.479829030 3733.756452 16 

Hooke  0.205761720 0.479785160 3733.756452 110 

Rosenbrock  0.206094820 0.479612030 3733.756452 62 

Powell  0.205658570 0.479863300 3733.756452 3 

Coggins 0.205651313 0.479863220 3733.756452 3 

Proposed method 0.231895187 0.463790374 3733.756452 1 

Table 1: Computational results for problem 1 
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Table 3: Computational results for problem 3 (Gottfried function) 

Method x1* x2* f(x1*, x2*) No. of iterations 
Coggins 

Proposed method 

0.603063881 

0.603588590 

0.040355205 

1.040340430 

1.169803020 

0.169803060 

6 

2 

Table 4: Computational result for problem 4 (Sisser’s function) 
Method x1* x2* f(x1*, x2*) No. of iterations 

Exact 

Coggins 

Proposed method 

0.000000000 

9.8697906E-05 

0.000000000 

0.000000000 

7.8315839E-05 

0.000000000 

0.000000000 

2.7803140E-16 

0.000000000 

- 

19 

1 

Table 5: Computational result for problem 5 (Rosenbrock’s function) 

Method x1* x2* f(x1*, x2*) No. of iterations 

Exact 

Coggins 

Proposed method 

1.000000000 

0.999937092 

0.999999999 

1.000000000 

1.005153050 

0.999999999 

0.000000000 

2.813191104E-03 

0.000000000 

- 

4 

1 

Table 6: Computational results for the problem 6 

Method No. of iterations when n = 4 No. of iterations when n = 12 

Fletcher-Reeves 11 15 

Coggins 9 13 

Proposed method 2 3 

Table 7: Computational results for the problem 7 when n = 460 

Method Average no. of iterations Success ratio 

Fletcher-Reeves 620 420/1000 

Coggins 310 820/1000 

Proposed method 26 990/1000 
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DISCUSSION OF RESULTS 
The stopping criteria for problems 1 to 6 is 

. For the Fletcher-
Reeves method, Armijo line search was 
used.  From tables 1-7, the proposed 
method shows better performance with 
99% success (by success we mean the num-
ber of successful runs out of 1000 runs) in 
problem 7 and with clearly minimum num-
ber of function evaluations resulting in a 
faster running. The problems were run us-
ing Matlab 6.5 on HP Compact nx7300 lap-
top. The execution time for the new 
method is in general about 78% faster than 
the execution time for Coggins method of 
4]. From these results, the new Coggins – 
Fibonacci method is shown to be consis-
tently very accurate and comparable with 
other methods. In particular, the present 
method converges faster than Coggins or 
Fibonacci method. 
 
Our computational experience in this work, 
as highlighted in section 1, supports the as-
sertion that the efficiency of an optimiza-
tion method depends on the search direc-
tion explored [20]. 
 
 

CONCLUSION 
The Coggins – Fibonacci algorithm for 
solving n – dimensional (n≥1) uncon-
strained optimization problems is here pro-
posed. The method is amenable to the usual 
mathematical analysis. By means of some 
test problems, the Coggins –Fibonacci 
method is shown to be no less inferior to 
other known methods for the rate of con-
vergence is faster than most other methods. 
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