ASSESSMENT OF ANTIMICROBIAL ACTIVITIES OF ZINC NANOPARTICLES SYNTHESIZED FROM AQUEOUS LEAF EXTRACTS OF OCIMUM GRATISSIMUM AND VERNONIA AMYGDALINA
Keywords:
Synthesis, Zinc-nanoparticles, Ocimum-grantissimum, Vernonia- amygdalina, characterization, antimicrobial properties.Abstract
Synthesis of nanoscale metals has been reported for environmental pollution effects and health problems which have made green synthesis via plant extracts to be preferred. As a viable alternative, use of plant extracts for effective synthesis of nano metallic particles has therefore been deployed due to safety and simple methodology. This study explored the potential of Ocimum gratissimum and Vernonia amygdalina leaf extracts as reducing agents for the synthesis of zinc nanoparticles. The extracts were utilized to reduce Zn2+ ions, and the resulting nanoparticles were characterized using UV-vis spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The XRD analysis revealed average particle size of 20.78 nm for nanoparticles synthesized with Ocimum gratissimum and 19.56 nm for Vernonia amygdalina. The antimicrobial properties of the synthesized nanoparticles were evaluated against Bacillus thuringiensis (ATCC 789794.1), Staphyloccoccus aureus (ATCC 20923) and Escherichia coli (ATCC 25922). The results showed significant inhibition zones ranging from 8-19 mm for O. gratissimum and 6 – 18 mm for V. amygdalina-mediated nanoparticles. In comparison, doxycycline demonstrated 18-20 mm zones of inhibition, while deionized water showed no inhibitory effect. This study has demonstrated the effectiveness of the plants leaf extracts in synthesizing zinc nanoparticles with potent antimicrobial properties.
References
Abere, H., Yadessa, M., 2018. Antimicrobial And Antioxidant Compounds From The Flower Extracts Of Vernonia Amygdalina. Advances In Pharmacological And Pharmaceutical Sciences, 2018: 1 – 6. Https://Doi.Org/10.1155/2018/4083736
Adeniyi, S. A., Orjiekwe, C. L., Ehiagbonare, J. E., Arimah, B. D., 2012. Evaluation Of Chemical Composition Of The Leaves Of Ocimum Gratissimum And Vernonia Amygdalina. International Journal Of Biological And Chemical Science 6(3): 1316-1323.
Adetutu, A., Morgan, W. A. Corcoran, O., 2011. Ethnopharmacological Survey And In Vitro Evaluation Of Wound-Healing Plants Used In South-Western Nigeria. Journal Of Ethnopharmacology 137(1): 50–56.
Adeyemi J. O., Oriola A. O, Onwudiwe D. C, Oyedeji A. O., 2022. Plant Extracts Mediated Metal-Based Nanoparticles: Synthesis and Biological Applications. Biomolecules.12(5): 627. doi: 10.3390/biom12050627.
Altammar K. A. 2023. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiology. doi: 10.3389/fmicb.1155622. PMID: 37180257; PMCID: PMC10168541.
Amanda M. S., Mohammad F. R., Saber M. H., John J. S., David A. S. and Ali F. S., 2010. Metal-based nanoparticles and their toxicity assessment. Nanomedicine and Nanobiotechnology 2(5): 544–568.
Ashwini. J., Aswathy, T. R., Achuthsankar, S. N., 2021. Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochemistry and Biophysics Reports 26: 1–10.
Bala N., Saha S., Chakraborty M., Maiti M., Das S. Basub R., Nandyc P., 2015. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. Royal Society of Chemistry 2015(5): 4993 – 5003.
Banerjee, P., Satapathy, M., Mukhopahayay, A., Das, P., 2014. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Springer Nature: Bioresources. Bioprocess1(3): 1 – 10.
Ebenezer, O. F. and Olatunde, O., 2011. Antioxidative and Chemopreventive Properties of Vernonia amygdalina and Garcinia biflavonoid. International Journal of Environmental Research and Public Health 8(6): 2533– 2555.
Edo G. I., Samuel P. O., Ossai S., Nwachukwu S. C., Okolie M. C., Oghenegueke O., Asaah E. U., Akpoghelie P. O., Ugbune U., Owheruo J. O., c, Gracious Okeoghene Ezekiel G. O., Onoharigho F. O., Agbo J. J. 2023. Phytochemistry and pharmacological compounds present in scent leaf: A review. Food Chemistry Advances: Elsevier, 3, 100300 https://doi.org/10.1016/j.focha.2023.100300.
Farombi, E. O., Owoeye, O., 2011. Antioxidative and chemopreventive roperties of Vernonia amygdalina and Garcinia biflavonoid. International Journal of Research and Public Health 8(6): 2533- 2555.
Godoy-Gallardo M., Eckhard U., Delgado L. M., Puente Y. J. D. de R., Hoyos-Nogués M., F., Gil J., Perez R. A. 2021. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. PubMed Central: Biomedical and Life Sciences Journal 6(12): 4470-4490.
Henry, F. A., Harry, K., Audy, D. W., 2019. Synthesis of silver nanoparticles using Aqueous extract of medicinal plants (Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. International Journal of Microbiology, 2019: 1–8. doi: 10.1155/2019/8642303. PMID: 31354833;
Huang, J., Li, Q. Sun, D., 2007. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10): 105104 – 105115. Google Scholar.
Husen, A., 2017. Gold nanoparticles from plant system: synthesis, characterization and their application in nanoscience and plant-soil systems. Springer International Publishing 48 (11): 455- 479.
Ijeh, I. I., Ejike, C. C., 2011. Current perspectives on the medicinal potentials of Vernonia amygdalina Del. Journal of Medicinal Plants Research 5: 1051–1061.
Khan M., Khan M. S. A., Borah K. K., Goswami Y., Hakeem K. R., Chakrabartty I.. 2021. The potential exposure and hazards of metal-based nanoparticles on plants and environment, with special emphasis on ZnO NPs, TiO2 NPs, and AgNPs: A review. Environmental Advances-Elsevier, 6: 100128.
Kambizi, L., Afolayan, A. J., 2001. An Ethnobotanical Study of Plants Used for the Treatment of Sexually Transmitted Disease (Njovhera) in Guruve District , Zimbabwe. Journal of Ethnopharmacology 77: 5 – 9.
Logeswari, P., Silambarasan, S., Abraham, J., 2015. Synthesis of silver anoparticles sing plants extract and analysis of their antimicrobial property. Journal of Saudi Chemical Society 19(3): 311-317.
Magadula, J. J. and Erasto, P., 2009. Bioactive natural products derived from the East African flora. Natural Product Reports 26(12): 1535–1554.
Meron, G. D., Fedlu, K. S., Gemechu, D. E., Bedasa, A. G., 2020. Synthesis of zinc oxide nanoparticles using leaf extract of Lippia adoensis (Koseret) and evaluation of its antimicrobial activity. Journal of Chemistry 2020: : 1-9.
Narayanaswamy, K., Athimoolam, R., Ayyayoo, J., 2015. Green synthesis of silver nanoparticles using leaf extracts of Clitoria tematea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. Journal of Nanoscience 2015: 1- 8. http://dx.doi.org/10.1155/2015/92820
Paramo, L. A., Feregrino-Perez, A. A., Guevara R, Mendoza, S. and Esquivel, K., 2020. Nanoparticles in agroindustry; applications, toxicity, challenges, and trends: Nanomaterials 10(9): 1654.
Pati R. J., Sontakke T., Biradar A. Nalage D., 2023. Zinc: an essential trace element for human health and beyond. Food and Health, 5(3): 1 - 7. Doi 10.53388 FH2023013.
Pirtarighat S., Ghannadnia M., Baghshahi S., 2019. Green synthesis of silver anoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment.Journal of Nanostructure in Chemistry 9: 1-9.
Ponarulselvam, S., Panneerselvan, C., Murugan, K., Aarthi, N., Kalimuthu,K., Thangamani, S., 2012. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific Journal of Tropical Biomedicine 2(7): 574-580.
Rajesh, K. S., Forishmeeta, B., Nikahat, P., 2015. Synthesis and characterization of ZnO nanoparticles using leaf extract of Camellia sinesisand evaluation of their antimicrobial efficacy. International Journal of Current Microbiology and Applied Science 4(8):444 - 450
Sandeep P., 2017. Phytochemical Constituents, Pharmacological and Traditional uses of Ocimum gratissimum l in Tropics. Indo American Journal of Pharmaceutical Sciences. 4(11): 4234-4242.
Santhoshkumar J., Venkat Kumar S., Rajeshkumar S. 2017. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource Efficient Technology 3(4): 459 – 465.
Savithramma, N., Rao, M. L., Devi, S. P., 2011. Evaluation of antibacterial efficacy of biologically synthesized silver Nanoparticles using stem barks of Boswellia ovalifoliolata Bal. and Henry and Shorea tumbuggaia Roxb. Journal of Biological Sciences 11(1): 39 – 45.
Senthilkumar, S.R., Sivakumar, T. 2014. Green tea (Camellia sinensis) mediated synthesis of zinc oxide nanoparticles and studies on their antimicrobial activities. International Journal of Pharmacy and Pharmaceutical Sciences 6(6): 461 – 465.
Shuaixuan Y., Zhenru G., Polycarp O. C., Preston C., Rico C., He F., Hong J., 2022. Green synthesis of nanoparticles: Current developments and limitations. Environmental Technolology and Innovation 26: 1 – 21.
Ying S, Guan Z., Ofoegbu P. C., Preston Clubb, Cyren Rico P. C. C., Hong F. H. J., 2022. Green synthesis of nanoparticles: Current developments and limitations. Environmental Technolology and Innovation 26: 102336.
Uddin T. M., Chakraborty A. J., Khusro A., Zidan B. M. R. M., Mitra S., Emran T. B., Dhama K., M., Ripon K. H., Gajdács M., Sahibzada M. U. K., Hossain M. J., Koirala N., 2021. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health: Elsevier 14(12): 1750-1766.
Ullah A., Lim S. I., 2022. Plant extract-based synthesis of metallic nanomaterials, their applications, and safety concerns. Biotechnology and Bioengineering, 119(9): 2273-2304. https://doi.org/10.1002/bit.28148.