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change (Baccini et al., 2017 and Rodríguez-
Soalleiro et al., 2018). More accurate estima-
tion of  trees aboveground biomass (AGB) in 
forests is needed to determine commercial 
use of  forest production, stand density, fuel 
and bio-energy contribution, and the role of  
forest biomass in the global carbon cycle. 
Currently, the most accurate methods for 
obtaining forest AGB are the use of  the site- 
and species-specific allometric equations 
based on measured forest biometric parame-
ters, such as the diameter at breast height 

ABSTRACT 
This study investigated the impact of applying artificial neural networks (ANNs) with different input 
variables and different architectures to estimate aboveground biomass (AGB) using allometric data 
from tropical forests in Southwestern Nigeria. The study also compared the result of ANNs with linear 
regression. Three fully connected feed-forward neural networks (all four-layer) with backpropagation of 
error were used in this study. They had two hidden layers: the first two had topography [2, 3, 3, 1], and 
the third had topography [3, 5, 5, 1]. Rectified Linear Unit (ReLU) activation function was used for all 
networks; Mean Squared Error (MSE) was used as the loss function. A learning rate of 1e-06 and 
1000 iterations was used to run the first two ANNs, and a learning rate of 1e-06 and 1850 iterations 
was used to run the third. Maximum loss for each neural network was 12.8393, 12.0371, and 0.2078, 
respectively, while minimum loss was 0.0391, 0.0408, and 0.1559, respectively. Accuracy was meas-
ured using Root Mean Squared Error (RMSE) with the training for each neural network RMSE’s being 
0.1997, 0.2113 and 0.3949 while test RMSE’s was 0.2199, 0.2284, and 0.3812 for each neural net-
work.  
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INTRODUCTION 
Forests play an important role in global car-
bon cycling because they act as carbon sinks 
and sources for atmospheric CO2 (Pan et al. 
2011; Chave et al. 2014). Forest above-
ground biomass (AGB) is an indicator for 
assessing forest ecosystem productivity and 
health as well as an indicator for determin-
ing the potential for carbon storage and car-
bon sink, as well as an important parameter 
for estimating carbon emissions and dis-
turbances caused by land use and climate 
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(DBH), height, crown closure, and stem 
density (Chave et al. 2014; Ali et al. 2015; 
Paul et al. 2015).  
 
There are major concerns with selecting the 
best regression model to estimate tree AGB 
in natural forests. Stevens, (2009) declared 
that because many growth data empirically 
turned out to align along a straight line 
when plotted in log-transformed scales, 
power models have played a substantial role 
in allometry. In contrast, others opined that 
allometry should go beyond power-law 
models because the growth data do not ex-
actly align along a straight line in log-log 
plots (Bernacci et al., 2000 and Picard et al., 
2015). However, Sileshi, (2014) argued that 
some allometric equations are dubious due 
to lack of  taking into consideration some 
validation indicators like collinearity among 
the predictors and reliability of  parameters 
estimate. 
 
To reexamine the issue of  whether or not 
power-law models are the best predictors 
for biomass estimation, an artificial neural 
network (ANN) based system was used to 
be compared to a traditional allometric 
method (regression analysis). There has 
been a substantial increase in the interest in 
artificial neural networks (ANNs) during 
the last 15 years (Kumar et al., 2015). Con-
sidering the complexity of  relationships be-
tween the response and explanatory varia-
bles and of  different views and major con-
cerns associated with allometric equations 
application for prediction of  trees AGB, 
ANN may be the best alternative to de-
crease the obscurity of  biomass estimation. 
 
MATERIALS AND METHODS 

Data Collection 
A Forest inventory-based approach was 
adopted to estimate above-ground tree bio-

mass in the study areas. Transects were dis-
tributed over the entire forest, using a sys-
tematic segmented grid (Buckland et al., 
2004) randomly superimposed onto the area. 
There were 5111 plots of  30 × 30m in Omo 
Biosphere Reserve. The forest inventory was 
conducted in 50 plots of  30 × 30m sample 
plots which was 1% sample intensity. All the 
trees in each sample plot were labelled with 
the use of  paper tape and markers to avoid 
leaving out any tree and also for easy identifi-
cation. Data were also collected for model 
validation on 9 plots of  30 × 30 m in Akure 
Forest Reserve. Field measurements of  tree 
variables were carried out using relascope, 
Haga altimeter, increment borer, scale 
weight, measuring tape, ranging pole, and 
Global Positioning System (GPS).  
 
Determination of  Biomass and Carbon 
Stock in the Study Area 
Measurement of  total height 
This is the vertical distance between the 
ground level and the tip of  a tree. It is ob-
tained by taking the reading at the top (RT) 
and reading at the base (RB) which is usually 
negative  (when on an elevated ground)  and 
positive  (when in a  depressed ground or 
valley).  It was measured with the aid of  
Spiegel Relaskop.  
Total height (H), using the metric scale was 
obtained by: 
 
 H = RT-RB  ………………….(1) 
 
Where  is the height,  is the reading at the 
top, and  is the reading at the base.  
 
Measurement of  tree diameter at Breast 
height (DBH) 
This is the diameter measurement taken for a 
standing tree at height 1.30 m above the 
ground level. This tree parameter was taken 
for trees within the permanent sample plots.  
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This measurement is generally accepted in 
forest inventory (Elzinga et al., 2005).  It  is  
the  easiest  measurable parameter  in  for-
est  inventory  with  high  degree  of   accu-
racy  where guiding  rules  are  followed.  It 
was measured with the aid of  diameter tape 
in centimetres (cm). 
 
Diameter at middle (Dm) and Diameter at 
the top (Dt) were also measured at various 
positions on the standing tree using Spiegel 
relaskop. Readings for Dm and Dt were tak-
en in terms of  numbers of  bands of   the  
relaskop  occupied  by  the  stem  of   the  
trees  both  at  the middle  and  the  top.  
These bands  of   relaskop  are  of   two  
types:  dark bands  which  are  one  unit  
each  and  big  white  bands  which  are  
four units each. 
 
Wood Density 
To determine the specific wood density, 
core samples were collected for each species 
at breast height. The specific wood density 
is the arithmetic average value of  all sam-
ples of  a species and were calculated as ov-
en dry weight divided by fresh volume of  
each sample. The inner diameter of  the bit 
of  the increment borer device was 0.5 cm 
leading to a diameter of  the sample of  0.5 
cm. The length L of  the sample was meas-
ured after its extraction. The oven dry den-
sity (ρ) in terms of  dry mass per fresh vol-
ume (g/cm3) of  all collected wood samples 
was estimated using 
 

 …….. (2) 
 
Where            is the dry mass of  wood sam-
ple   obtained by the increment borer,    is 
the diameter of  the bit, and     is the length 
of  the sample    . 

Data Processing and Analysis 
Basal Area Estimation 
Tree Basal Area (TBA) is the cross-sectional 
area (over the bark) at breast height (1.3 me-
tres above the ground) measured in metres 
squared (m2). The TBA can be used to esti-
mate tree volumes and stand competition. 
The Tree Basal Area was determined by 
measuring the diameter at breast height in 
centimetres and the basal area (m2) was cal-
culated using an equation based on the for-
mula for the area of  a circle (area = πr2 
where r = radius and π = 3.142)  and the for-
mula for radius (r =diameter/2 = DBH/2). 

 
…(3) 

 
Volume Estimation 
Volume for each tree was estimated using the 
Newton’s formula 

  ……..(4) 
Where V is the  stem  volume  (m3),  H  is 
the  total  height  (m),  Db  is the diameter at 
base (cm), Dm is the diameter at the middle 
(cm), and Dt is the Diameter at the top (cm). 
 
Above-Ground Biomass (AGB) Calcula-
tion 
The above ground biomass (AGB) for each 
tree was estimated using the formula: 

  
 ……..(5) 

 
Where AGB (t/ha) measured in tonne per 
hectare is the aboveground biomass of  the 
tree, V is the volume of  tree (m3/ha) meas-
ured in cubic metre per hectare,   is the spe-
cific wood density (t/m3), and        is the bio-
mass expansion factor.  

2 2 24

24

Db Dm Dt
V Hp

æ ö+ +
= ç ÷

è ø
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Regression Model Development 
Based on the data collected, three equations 
were developed. Prior to the establishing of  
the allometric equation, scatter plots were 
used to ascertain that the relationship be-
tween independent and dependent variables 
was linear. Furthermore, several allometric 
relationships between independent and de-
pendent variables were tested. The inde-
pendent variables included DBH (D), 
height (H) and wood density (W), whereas, 
the dependent variable was AGB (A). 

 
 ……(6) 

            ……(7) 
 
        ……(8) 

 
Where:       is the natural logarithm;     is the 
intercept;    and  is the slope. 
 
Model Development for Artificial Neu-
ral Networks  
Three fully connected feed forward neural 
networks (all four–layer) with backpropaga-
tion of  error were used in this study. They 
had two hidden layers: the first two had to-
pography 2, 3, 3, 1, and the third had to-
pography 3, 5, 5, 1. Rectified Linear Unit 
(ReLU) activation function was used for all 
networks, and half  of  the Mean Squared 
Error (HMSE) was used as the loss func-
tion. 
 
Let     and    be the vector of  weights and 
biases for layer    of  the neural network. 
The weights and biases for all layers of  the 
neural networks were randomly initialized 
from a normal distribution with arbitrary 
minimum and maximum values. 
 
Forward Propagation 
Let     be the sum of  the vector of  biases 
for the first layer      , and the dot product 

of  the input vector         and the weight of  
the first layer        such that: 

 
      …………(9) 
 

Let z be an element of  Zi for layer i, the in-
put vector for layer i + 1 denoted by Ai is 
derived by the application of  the activation 
function (Rectified Linear Unit or ReLU) 
(Fukushima, 1980; Nair & Hilton, 2010; and 
Schmidhbuer, 2014) on each element of   Zi 
such that: 
 

   ………….(10) 
 
Where ReLU performs a threshold operation 
to each input element where values less than 
zero are set to zero, such that: 
 

 ……(11) 
 
Generalizing (11) above subsequently for 
layer i of  the neural network, we have: 
 

 ….(12) 
 
The output vector of  the neural network is 
given as: 
 

 …..(13) 
 
Where        is the vector of  the predicted 
output variable; and  Zf  is the sum of  the 
bias vector and the dot product between the 
input vector and weight vector of  the final 
layer. 
 
Loss Function 
The loss function used is the Mean Squared 
Error (MSE) and is defined as: 

 
…….(14) 
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Back Propagation 

Differentiating the Loss Function  in (14) with respect to , results in: 

                                                                         (15) 

From (13) above, differentiating the output vector of  the neural network  with re-

spect to   is given by: 

                                                                                     (16) 

Where  is defined by  

                                                                                        (17) 

Differentiating the Loss Function  with respect to  is given by: 

                                                                (18) 

     

From (12) above, differentiating  with respect to  is given by: 
                                                                                 (19) 
                           
 
 
Differentiating  in (12) with respect to  results in: 

                                                                                             (20) 

Differentiating  in (12) with respect to  results in: 

                                                                                                   (21) 

Let  be the learning rate of  the neural network. The vector of  weight  and bias  

for each layer  are updated by the following equations: 

                                                                                   (22) 

                                                                                    (23) 
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Accuracy 
Accuracy was measured using Root Mean Square Error (RMSE) defined as: 

                                                                      (24) 

Analysis 
Analysis was carried out using Python Pro-
gramming Language version 3.8 (Van Ros-
sum & Drake, 2009). Packages used include 
NumPy (Oliphant, 2006; van der Walt et al., 
2011), Matplotlib (Hunter, 2007), Pandas 
(McKinney & others, 2010), SciPy (Virtanen 
et al., 2020), and Scikit-learn (Pedregosa et 
al., 2011). Data were split into two parts: 
training set (80%) and validation set (20%).  
 
Regression analysis was first carried out on 
the data, using the allometric models in 
equations 6, 7 and 8 above to estimate pa-
rameters α and β. The resulting estimated 
parameters were thereafter used to create 
regression models between the dependent 
variable (In (AGB)) and the independent 
variable (In(DH), In(D2H), In(D2HW)) of  
each allometric models. The input data 
from the validation set is then inputted in 
the regression model to predict               . 
For the ANN models, a learning rate of  1e-
06 and 1000 iterations was used to run the 

first two ANNs, and a learning rate of  1e-06 
and 1850 iterations was used to run the 
third. The predicted values for both the re-
gression and ANN models were compared 
with the test values and accuracy was meas-
ured with Root Mean Square Error (RMSE). 
 

RESULTS AND DISCUSSION 
The output variable In(A) had a mean of  
4.135 and a standard deviation of  0.679. It 
also had a strong correlation concerning all 
input variables used in this study. With a 
mean of  6.524 and standard deviation of  
0.689, the first explanatory In(DH) variable  
had a covariance of  0.382041 and a correla-
tion of  0.815684 with respect to the output 
variable In(A). In(D2H) had a mean of  
10.119 and standard deviation of  1.136, and 
it had a covariance of  0.624536 and correla-
tion of  0.808669 concerning In(A).  In
(D2HW) had a covariance of  0.629540 and 
correlation of  0.850021, with a mean of  
9.605 and standard deviation of  1.089. 

Table 1: Summary of  Explanatory Variables and Regression Model Details 

Explanatory 

Variable 

Covari-

ance 

Correla-

tion 

Mean Standard 

Deviation 

Rsq Intercept 

(  

Slope 

( ) 

 
0.382041 0.815684 6.524 0.689 0.646596 -1.1174 0.8066 

 
0.624536 0.808669 10.119 1.136 0.63298 -0.7326 0.4817 

 
0.629540 0.850021 9.605 1.089 0.6937 -0.9025 0.5250 
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Linear Regression Models 
The regression models were all good fit for 
their respective variables (Table 1; Figure 1). 
The intercept and slope for the regression 
models were -1.1174 and 0.8066 for In

(DH), -0.7326 and 0.4817 for In(D2H), and -
0.9025 and 0.5250 for In(D2HW) (Figure 1). 
The R-squared values were 0.646596, 
0.63298, and 0.6937 for In(DH), In(D2H), 
and In(D2HW) respectively (Table 1). 

Figure 1: Scatter plot of  the variables under Study with Regression Line 

Artificial Neural Networks 
The input variables used in the linear re-
gression modelling were slightly altered for 
the ANNs to be able to accommodate 
them. From the laws of  logarithm, the in-

put variables in equations 6, 7, and 8 can 
each be rewritten as a linear combination of  
the natural logarithm of  the individual al-
lometric measurements that make up the var-
iable.   

Figure 2: Graphs Training Loss against number of  Iterations for each Neural Network 
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The values on the right-hand side of  equa-
tions 25, 26, and 27 make up the input vari-
ables for the respective ANNs under study 
(Table 2, Table 3, and Table 4). The first 
and second ANNs (Figure 3, Figure 4) 

showed a rapid decline rate of  training loss 
with fewer iterations, while the third ANN 
(Figure 5) showed a less steep decline with 
more iterations (Figure 2). 

                                                                   (25) 

                                                                   (26) 

                                        (27) 

Figure 3: Architecture of  the First Neural Network 

Table 2: Weights and Biases of  the First Neural Network 

Layer 1 Bias 
  

  

Node 1 1.5702 1.6064 -1.0643   
Node 2 -0.9358 -0.6143 0.8724   
Node 3 0.1445 -0.5397 -2.3192   
Layer 2 Bias Layer 1 

Node 1 

Layer 1 

Node 2 

Layer 1 

Node 3 
Node 1 -0.1263 -0.2494 -0.3224 -1.0999 
Node 2 0.4143 1.1764 -0.3885 -0.3656 
Node 3 -1.2692 -2.0601 1.1338 -0.8779 
Layer 3 Bias Layer 2 Layer 2 Layer 2 

 
0.4886 1.1447 -0.0096 0.5025 
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Figure 4: Architecture of  the Second Neural Network 

Table 3: Weights and Biases of  the Second Neural Network 

Layer 1 Bias 
  

  

Node 1 1.5739 1.5913 -1.0780   
Node 2 -0.9321 -0.6134 0.8718   
Node 3 0.1481 -0.5374 -2.3163   
Layer 2 Bias Layer 1 

Node 1 

Layer 1 

Node 2 

Layer 1 

Node 3 
Node 1 -0.1155 -0.2494 -0.3224 -1.0999 
Node 2 0.4251 1.1802 -0.3882 -0.3410 
Node 3 -1.2584 -2.0601 1.1338 -0.8778 
Layer 3 Bias Layer 2 

Node 1 

Layer 2 

Node 2 

Layer 2 

Node 3 

 
0.4969 1.1447 -0.0178 0.5025 
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Figure 5: Architecture of  the Third Neural Network 

Table 4: Weights and Biases of  the Third Neural Network 

Layer 1 Bias 
   

    

Node 1 -1.1162 1.6244 -2.3015 1.4621     

Node 2 -0.1887 -0.6113 1.7486 -2.0634     

Node 3 -0.8941 -0.5287 -0.7617 -0.3244     

Node 4 0.0260 -1.0730 0.3080 -0.3651     

Node 5 0.5666 0.8560 -0.2586 1.1377     

Layer 2 Bias Layer 1 

Node 1 

Layer 1 

Node 2 

Layer 1 

Node 3 

Layer 1 

Node 4 

Layer 1 

Node 5 
Node 1 -0.6663 -1.1006 -0.6837 -0.6917 -0.0127 -0.1918 

Node 2 0.1616 1.1447 -0.1229 -0.3968 -1.1173 -0.8876 

Node 3 2.0709 0.9016 -0.9533 -0.6872 0.2321 -0.7482 

Node 4 0.0909 0.5025 -0.3038 -0.8459 1.6543 1.6888 

Node 5 0.5879 0.9009 0.5011 -0.6714 0.7401 0.0495 

Layer 3 Bias Layer 2 

Node 1 

Layer 2 

Node 2 

Layer 2 

Node 3 

Layer 2 

Node 4 

Layer 2 

Node 5 

 
0.6634 0.3002 -0.3523 -1.1418 -0.3327 -0.0125 
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Comparative Accuracy Analysis 
The training RMSE’s for the linear regres-
sion models were 0.3967, 0.4043, and 

0.3693 while the test RMSE’s were 0.3761, 
0.3784, and 0.3060 (Table 5).  

 47 

Table 5: Model Accuracy Measurement 

Model Type Explanatory Variables RMSE 
  Training Test 
  

Linear Regression 
 

0.3967 0.3761 

 
0.4043 0.3784 

 
0.3693 0.3060 

        
  

Neural Network 
,  

0.1997 0.2199 

,  
0.2113 0.2284 

, , 

 

0.3949 0.3812 

Maximum loss for each neural network was 
12.8393, 12.0371, and 0.2078, while mini-
mum loss were 0.0391; 0.0408; and 0.1559. 
Accuracy was measured using Root Mean 
Squared Error (RMSE) with the training 
RMSE’ as 0.1997, 0.2113 and 0.3949, while 
test RMSE’s was 0.2199, 0.2284, and 0.3812 
for each neural network. 
 
This study investigated the impact of  apply-
ing ANNs with different input variables and 
different architectures to estimate AGB us-
ing allometric data from tropical forests in 
Southwestern Nigeria. The study also com-
pared the result of  ANNs with linear re-
gression and found out that the ANN mod-
els performed better than the linear regres-
sion models. Two things were a factor in the 
accuracy of  the models. The first was the 
number of  input variables. The models with 
more input variables performed better than 
other models within the same category. In 
conclusion, the architecture of  the neural 

network, and the nature and number of  the 
input variables are significant factors in the 
accuracy of  the ANN models. Also, ANNs 
are a valuable way of  modeling AGBs. 
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