
A MULTILANGUAGE COMPLEXITY MEASUREMENT 
TOOL FOR CODE QUALITY ASSESSMENT OF  

SOFTWARE USING CYCLOMATIC COMPLEXITY  
APPROACH 

 
*1M. A. OGUNRINDE AND 2O. S. AKINOLA 

 
1Department of  Mathematical and Computer Sciences, Fountain University, Osogbo,  
Nigeria. 

2Department of  Computer Science, University of  Ibadan, Ibadan, Nigeria. 
*Corresponding Author: bogunrinde@gmail.com  Tel: +2348054280030 

attributes which includes ease of  mainte-
nance, testability, reusability, difficulty, relia-
bility, interoperability, etc. (IEEE Computer 
Society, 2014). The significant method to 
look at the quality is by ceaseless and early 
assessment of  the program codes as it pro-
gresses. The program codes must have high 
quality to address the business issues in to-

ABSTRACT 
Code complexity or quality has been a focus point by software stakeholders, and on several occa-
sions, has led to the abandonment of codes that has consumed time and money to develop. However, 
tools that measure code complexity and predict future maintenance across some development plat-
forms before deployment are inadequate. This study was designed to develop a Complexity Measure-
ment Tool (CMT) for assessing code quality in different platforms and compare its performance with 
that of an existing complexity tool. McCabe cyclomatic complexity approach was adopted and the 
CMT was developed using C# language to support four programming languages: C, C++, C# and 
JavaScript.  The tool adopted source codes written in any of the above-mentioned programming lan-
guages as input, scanned through and reported names of each method contained in the source pro-
gram, their code lines, the complexity of each of the method and also specified the equivalent category 
of the complexity value. The performance of CMT was compared with Code Metrics (CM), an existing 
complexity equivalent tool embedded in Visual Studio (VS) environment using System’s Computation-
al Time (SCT) and result representations. The average SCT obtained from CMT and CM for all the 
codes were 1.0±0.01 and 3.0±0.01 minutes. The complexity measurement tool with cyclomatic com-
plexity category had better speed and result interpretation. This will assist software developers in 
building quality into their products. The result from the tool can also be used in making critical deci-
sions by software stakeholders. 
 
Keywords: Code Quality, Software Maintenance, Multi-language, Software Stakeholders, Complexity 
Tool, Software Maintainability, Quality Assessment 

INTRODUCTION 
One of  the major objectives of  software 
development is the system quality. Since this 
is the most desired of  by stakeholders in the 
domain, it is therefore essential to identify 
the quality factors and improve them. Pro-
gramming code quality can be termed as a 
code characterized with a wide range of  

 24 

Journal of  Natural  
Science, Engineering 

and Technology  

ISSN: 
Print    -  2277 - 0593 
Online -  2315 - 7461 
© FUNAAB 2021 

J. Nat. Sci. Engr. & Tech. 2021, 20(1): 24-36 



 M. A. OGUNRINDE AND O. S. AKINOLA 

day’s market and therefore becomes a focal 
point for developers of  software. The pres-
ence of  certain factors that influence the 
quality of  program code, software engineers 
has come to conclusions that there is a link 
between unseen attributes of  program code 
such as cost, strength, Lines of  code 
(LOC), speed etc. and those attributes of  
program code which has direct impact on 
the stakeholder such as usefulness, quality, 
complexity, effectiveness, reliability or via-
bility. For instance, a greater number of  
code lines may prompt more prominent 
software complexity, etc (Tashtoush, Al-
maolegi, & Arkok, 2014). 
  
Similarly, the complexity of  software may 
have effects on maintenance activities like 
software testability, reusability, understanda-
bility, and modifiability (Tashtoush et al., 
2014). According to IEEE (2014) Software 
complexity is defined as the degree to 
which a system or component has a design 
or implementation that is difficult to under-
stand, verify and change in future. Many 
Programmers define software complexity as 
“Difficult to perform a task such as testing, 
maintenance, debugging and to change the 
software in future” (Ardito et al., 2020; De 
Silva, Kodagoda, and Perera, 2012). Varia-
bles that make the program codes hard to 
comprehend are accountable for its com-
plexity. As a result, it is important to find 
way of  reducing the effects of  the complex-
ity on program codes and guarantee the 
quality simultaneously. Hence, the im-
portant task is keeping quality of  the pro-
gram codes in light of  the requisite func-
tionalities. The focus of  this work was to 
develop a Complexity Measurement Tool 
(CMT) based on McCabe approach for 
measuring the complexity of  Software be-
fore deployment. The tool has the capacity 
to be incorporated into Integrated Develop-

ment Environments (IDEs) and also pre-
sented the decision-makers with some infor-
mation about the target solution. The re-
maining part of  the paper is arranged as fol-
lows; section 2 discussed the McCabe Cy-
clomatic Complexity approach followed by 
related works in section 3, section 4 talked 
about the materials and methods used while 
section 5 presented the results and discus-
sion. 
 
MCCABE CYCLOMATIC COMPLEXI-
TY APPROACH 
Three major metrics for measuring complex-
ity of  program codes have been reported in 
the literature which includes Lines Of  Code 
(LOC), Halstead’s measure of  complexity 
and Cyclomatic Complexity metric (Gujar, 
2019 ; Tashtoush et al., 2014). LOC metric 
only counts the number of  lines in the pro-
gram’s source code. It is calculated at the end 
of  the application completion, ignores the 
complexity of  decision statements and con-
siders the complexity of  each code line 
(Gujar, 2019;Ostberg and Wagner,2014; Og-
heneovo, 2013). In solving the difficulty of  
LOC metric, a new metric called Halstead’s 
complexity metric was introduced. This met-
ric is used to measure the complexity of  the 
program or modules directly from the pro-
gram source code but there was also some 
problem with this metric. Halstead classifies 
a program as a collection of  tokens, either 
operands or operators but only includes the 
complexity from data flow and is also calcu-
lated at the end of  the whole program’s im-
plementation (Delange, 2015; Tashtoush et 
al., 2014; Madi, Zein, & Kadry, 2013; Sere-
brenik, 2011). 
 
Cyclomatic complexity has been the oldest 
and the widely acceptable tool for assessing 
software quality  out of  the three code com-
plexity tools in the literatures, (Alenezi & 

 25  J. Nat. Sci. Engr. & Tech. 2021, 20(1): 24-36 



 A MULTILANGUAGE COMPLEXITY MEASUREMENT TOOL ... 

Zarour, 2020; Gujar, 2019;Ukić, Maras, & 
Šerić, 2018; Shanthi, et al., 2018; Vard 
Antinyan et al., 2014; Garg, 2014; Madi et 
al., 2013;Mohamed, et al., 2013). The reason 
as to why the McCabe’s metrics is used is 
because it gives a quantitative measure of  
the results on the risk assessments of  the 
software component (Alenezi & Zarour, 
2020; Ardito et al., 2020; Gujar, 2019; 
Tombe and Oliveira Okeyo, 2014). 
 
McCabe’s Cyclomatic Complexity was intro-
duced by T. J. McCabe in 1976 to overcome 
the problems associated with LOC, 
Halstead’s Measures of  complexity. It is 
computed before the application comple-
tion and can be calculated at the early stage 
of  software development life cycle as com-
pared to Halstead's metric (Omri, Montag, 
& Sinz, 2018; Oliveira, Black, & Fong, 2017; 
Gil & Lalouche, 2016; Meirelles et al., 2010) 
McCabe’s Cyclomatic Complexity is an indi-
cation of  a program module’s control-flow 
complexity and has been found to be a reli-
able indicator of  complexity in large soft-
ware projects. It is used to measure the 
complexity of  software via the number of  
independent path or number of  independ-
ent flows through the graph. It is a direct 
indicator of  software cost and quality be-
cause these two parameters are directly re-
lated to software complexity (Tombe and 
Okeyo, 2014). 
 
The Significance of  the McCabe Num-

ber 
Research has shown that program with 
McCabe Cyclomatic complexity number 
above 10 has a higher complexity which im-
plies that the program likely to contain bugs 
and flaws then it will be extremely hard to 
comprehend such program. Likewise, the 
number of  experiments required to test such 
program code will be on the high side too. 
The higher the Cyclomatic number, the high-
er will be the bugs. Similarly, the higher will 
be the maintenance time required for extend-
ing the code to accommodate more features 
as well as the number of  test cases required 
during testing. Software Engineering Insti-
tute, categorized risk associated with the 
software or its component in term of  the 
measured Cyclomatic Complexity (Table 1). 
It shows that module and/or program com-
ponent that has its cyclomatic complexity 
measured between 1 and 10 is said to be free 
of  risk; which means the code is well struc-
tured and require less maintenance cost and 
effort, Software and/or component whose 
Cyclomatic Complexity measured between 
11 and 20 is said to be of  moderate risk, less 
structured, require more maintenance effort 
and cost. Software components whose Cy-
clomatic Complexity measured fall between 
21 and 50 are said to be of  high risk, less 
structured and require more effort and cost 
while those of  50 and above are regarded as 
very high risk, unstructured and untestable 
software and require grate maintenance ef-
fort and cost (Surendra, 2020).  

 26  

Table 1: Cyclomatic Complexity Categories with equivalent Number (Surendra, 
2020)  

Cyclomatic Complexity Risk Evaluation (Complexity Category). 
1-10 Software considered as risk-free software 
11-20 Software considered having a moderate-risk 
21-40 Software considered as of  high-risk 

41 and above Considered as very high risk and untestable software, 

J. Nat. Sci. Engr. & Tech. 2021, 20(1): 24-36 



 M. A. OGUNRINDE AND O. S. AKINOLA 

RELATED WORKS 
According to Gujar (2019), the use of  Cy-
clomatic Complexity as a software metric in 
software developments an not be over em-
phasised. The author referred to the metris 
as a White box and structural testing re-
quired in the life of  an upcoming software. 
The purpose of  the paper is to describe the 
Use and Analysis on Cyclomatic complexity 
in Software development with an example. 
The result of  the research shows that the 
high the decision points within the pro-
gram, the higher the complexity. 
 
Another expert, Liu et al. (2018), said pro-
gramming development influence the com-
plexity of  a software and its component in 
an object-oriented systems emphasised.  
They built a supporting tool based on cy-
clomatic complexity which was used to as-
sess some programming codes. Their con-
clusion was that though cyclomatic ap-
proach to measuring complexity in program 
codes has been projected over forty years 
ago, it remains a significant guide to meas-
uring quality in program code and deter-
mining ease of  future maintenance for all 
types of  programming dialects. At the same 
time pointed out that there are lots of  ad-
vantages for developers and other stake-
holders involved in making critical decisions 
using the tool.  
 
Malhotra (2015) is of  the opinion that 
Complexity in software is constantly consid-
ered as an undesired property since it is a 
dynamically worsen program code quality. 
Some measures have been created and uti-
lized by different software development 
companies for assessing and ensuring values 
in program codes; processes that produce it 
are kept at a minimal level, and guarantee 
ease of  maintenance. The focus of  the 
study was the development of  an applica-

tion using Python programming language 
based on Cyclomatic approach and com-
putes complexity for program codes written 
in python. 
 
Miguel et al., (2014) conducted a survey of  
Software Quality Models for the evaluation 
of  Software Products.  They are of  the opin-
ion that since software product is used in an 
aspect of  our life, measuring and evaluating 
its quality should be given utmost im-
portance. A few models have been proposed 
to help different kinds of  clients with quality 
issues. They classified software developed as 
at 2000 has depended on produced or facto-
ry-made components and offered to meet 
people's high expectations for evaluating 
quality such as low configurability, un-
reusability, un-maintainability, under quality 
and lower-cost products. Subsequently, 
grouped into fundamental models are mod-
els which were created until 2000, and seg-
ments or custom-made quality models. Their 
article also described the strengths of  each 
model together with their weaknesses. They 
concluded that in the present age, interaction 
between software stakeholders neither play a 
significant role in producing software that is 
of  high standard program code or product. 
 
In a work titled “The Correlation among 
Software Complexity Metrics with Case 
Study”, Tashtoush et al. (2014) observed that 
interest of  researchers for programming 
quality is developing progressively, hence 
various scales for the product are developing 
quickly to deal with the nature of  program-
ming. The product complexity metric is one 
of  the estimations that utilization a portion 
of  the inner traits or attributes of  program-
ming to know how they impacted on the 
product quality. In this paper, the Author 
discussed how increasingly productive pro-
gramming complexity measurements, for 

 27  J. Nat. Sci. Engr. & Tech. 2021, 20(1): 24-36 



 A MULTILANGUAGE COMPLEXITY MEASUREMENT TOOL ... 

example, Cyclomatic multifaceted nature, a 
line of  code and Hallstead complexity met-
ric and their effects on the product quality. 
It equally examined and breaks down the 
relationship between them. The authors 
finally concluded that all are connected with 
the quantity of  error incurred by utilizing a 
genuine dataset as a contextual analysis 
(Tashtoush et al., 2014). 
 
According to Antinyan et al. (2014),  man-
aging Complexity has turned into an essen-
tial measure in constant programming im-
provement. Their research was aimed at 
developing a measurement system that 
keeps tracks of  features that can cause diffi-
culty in software development through be-
ing part of  a research conducted in two big 
programming houses. They evaluated three 
complexity methods and two change prop-
erties of  code for two big industrial prod-
ucts. They also monitored complexity pro-
gress for five consecutive releases of  the 
products. The outcomes demonstrated that 
observing cyclomatic complexity values, 
capacities development and number of  revi-
sions of  function concentrated the atten-
tion of  the designers to possibly dangerous 
functions and capacities for evaluation and 
improvement. 
 
Antinyan et al. (2013) observed in a work 
titled “Monitoring Evolution of  Code 
Complexity in Agile/Lean Software Devel-
opment”. The authors said that one of  the 
unique features of  Agile and Lean program-
ming process is the “grow” of  program 
code which is relative to new functionality 
with moderately little augmentations as the 
client keep on requesting for an extension 
of  the initial features. The capacity of  the 
organizations to convey on those requests 
has two main thrusts behind it which have 
serious effect on software evolution. The 

objective of  this study was to introduce an 
estimation framework for observing these 
driving forces, during their contextual analy-
sis. Two major domains were investigated 
using development of  size, complexity, cor-
rections, and number of  creators of  two 
enormous programming items. Their out-
come revealed that McCabe’s complexity vale 
and version corrections are two key features 
that should be properly observed to have the 
complexity of  the program code under 
threshold.  
 
Debbarma, Debbarma, Debbarma, Chakma, 
& Jamatia, (2013) reviewed and analysed 
Software Complexity Metrics focusing on 
Structural Testing. They said one of  the fun-
damental goals of  programming measure-
ments is that applying it to both product and 
processes that produced it. Software compo-
nents with high complexity are generally 
considered worse than those with low com-
plexity. In their work, they reported that 
complexities in program code are factors 
that should be determined, pursued, and 
controlled frequently at any stage of  devel-
opment which includes testing. Various parts 
of  measurements in structural testing which 
helps in calculating efforts needed for testing 
program code were evaluated and carefully 
studied. They concluded that measuring the 
complexity of  the software could prompt 
reduction in development estimated cost and 
improve testing adequacy. 
 
Mohamed et al. (2013) worked on using Cy-
clomatic Complexity Metrics in assessing 
student programming performances as a stu-
dent always believe that Programming cours-
es are usually difficult and complex. The 
complexity of  a source program may be con-
trolled by the number of  the linearly autono-
mous track within the code. Their study fo-
cused on deliberating the consistencies of  

 28  J. Nat. Sci. Engr. & Tech. 2021, 20(1): 24-36 



 M. A. OGUNRINDE AND O. S. AKINOLA 

the complexity of  the code produced by 
students based on the programming ques-
tions in the practical assessment throughout 
a semester of  studies and then compared 
the level of  complexity and the students’ 
grade for various assessments materials 
done. Based on this, they observed a rela-
tionship and concluded that a certain pat-
tern of  the expected complexity of  a pro-
gramming code has an effect on students 
performance. 
 
In a work titled “Assessment of  Software 
Quality: Choquet Integral Approach”, Pasri-
ja, Kumar, & Srivastava (2012) applied an-
other approach to software quality assess-
ment based on the fact that various initially 
proposed software quality model could not 
qualify the software parameter  efficiently. 
Another strategy was proposed for con-
trasting distinctive programming arrange-

ments dependent on the SRS to a typical is-
sue. The study concluded that the introduc-
tion of  Choquet Integral with fuzzy 
measures should be taken into cognizant, 
provided significant concepts of  cooperation 
among software criteria exist. 
 
Based on the results from the review of  re-
lated works, it can be concluded that despite 
the popularity of  McCabe Cyclomatic com-
plexity, its automation is scarce in the litera-
ture, and available complexity tools are inad-
equate. 
 

METHODOLOGY 
The focus of  this work is to develop a soft-
ware quality metric that can be useful for 
both academic researchers and industrial 
practitioners. The tool was developed using 
c# technology and the Research methodolo-
gy (Figure 1). 

 29  

Identify Research Gap 

Analyse and Design the Complexity tool 

Come up with problems with existing tool in the literature 

Implementation of  the Complexity Tool 

1. Analyze the problem and set 
the goals to be achieved, 

2. write the algorithm,  
3. Identifies different modules 

involve and design the proto-
types 

Testing of  the developed tool 

Choose the programming language and design 
tool necessary for the tool development 

Tool deployment and publishing 

Benchmark the developed tool (CCT) with the general requirement 

Figure 1: Research Methodology/Framework 

J. Nat. Sci. Engr. & Tech. 2021, 20(1): 24-36 



 A MULTILANGUAGE COMPLEXITY MEASUREMENT TOOL ... 

Brief  about the Developed Tool 
Complexity Measurement Tool (CMT) is a 
metric tool that analyzes C, C++, C#, and 
JavaScript code and produces a list of  the 
methods or functions in the analyzed code. 
The developed tool is a desktop-based ap-
plication which is inherently distributive. 
This distributive characteristic of  the tool 
helps in getting different programming lan-
guages to share the metrics and make analy-
sis within them easier and also improves the 
efficiency of  software developers’ work. 
The developed tool takes source codes writ-
ten in the above-mentioned programming 
languages as its input, it identifies each 
method or function in the code, the number 
of  code lines that form each method, then 
measure the complexity of  each of  the 
method and also specify the category of  the 
complexity value. The developed tool will 
assist developers to produce reliable and 
efficient software products with good 
maintenance property. The result from the 
tool can also be used in making critical deci-
sions such as predicting ease of  mainte-
nance, production cost and effort required. 
 
Modules involved in the Developed Sys-
tem 
CMT TEST: This module carries out vari-
ous tests such as the supported languages, 
block analyzer, configuration file, driver, file 

analyzer, integration and program tests. The 
main function of  this module is to ensure 
that all program is well tested before consid-
ered for analysis. 
 
CMT ENGINE: This module consists of  
the engine that carries out the metrics on 
each supported languages, updates and for-
ward result analysis of  the CMT user‘s inter-
face (CMT GUI). 
 
CMT GUI: This module is the main entry 
and exit point into the CMT application 
which defines the user interfaces. The output 
consists of  a form that specifies the category 
of  the source code, unit (Method) been 
measured, complexity generated for the 
source code, lines of  codes and the file path.  
 
CMTvsPLG-IN: This module provides an 
add-in extension for Visual Studio Integrated 
Development Environment (IDE) to enables 
source codes to be tested from these envi-
ronments using defined CCM controls. It 
has been tested with VS 2008 and 2010. 
 
The interrelated modules that make up the 
developed Complexity Measurement Tool 
(CMT) with the engine taking the central 
stage to which all other modules have a spec-
ified relationship (Figure 2). 

 30  

CC-TOOL 

CMT ENGINE  

CMT TEST  CMT GUI 

CMTvsPLG-IN 

VS IDE 

Send the result to the CCT GUI 

Compute the complexity of    the supported languages 

Input the source code 

Display the result of the 
tool 

Test each artifact for 
  
(.c, .cpp, .h, .hpp, .cs, 
.js) 

Source code written in VS  

Source code written in VS  

CC result 

Display CC result 

Figure 2: The Context Diagram of  the Developed CMT Application 

J. Nat. Sci. Engr. & Tech. 2021, 20(1): 24-36 



 M. A. OGUNRINDE AND O. S. AKINOLA 

Complexity Measurement Tool Algo-
rithm 
The algorithm for the developed tool is 
shown below: 
 
Start 
Input the source code 
if(filename.ToLower().EndsWith(".cpp")|| 
filename.ToLower().EndsWith(".cs")||  
filename.ToLower().EndsWith(".h”)||  
filename.ToLower().EndsWith(".hpp")|| 
filename.ToLower().EndsWith(".c")||  
filename.ToLower().EndsWith(".js")||  
filename.ToLower().EndsWith(".ts"))  
{ 
Call FileAnalyzer 
Call FilePaser 
{ 
Call Calculate ccmNo 
{ 
Call Classification  
{ 
Call ResultOutputer 
} 
} 
} 
Call errorMessage (“File not supported”) 
} 
Call errorMessage (“File not supported”) 
End 
 
Complexity Measures 
This research employed a McCabe Cy-
clomatic Complexity measure in measuring 
the code complexity in order to test the effi-
ciency of  the tool developed. As discussed 
earlier in Chapter Two, there are three ways 
of  calculating the software Complexity us-
ing McCabe Cyclomatic Complexity meas-
ure; the second method (Number of  binary 
decisions + 1) produced by Gill and Ke-
merer (1991) was adopted in the develop-
ment of  the tool and the results were 
benchmarked against the standard provided 

by the Software Engineering Institute, SEI. 
The complexity results show that the code 
produced during software development is 
either risk-free software, having a moderate 
risk, high risk, or high risk and even not test-
able software based on the complexity num-
ber they produced. The formula and the al-
gorithm are as follow; 
 
Cyclomatic Complexity (CC) = number of  
decision statements + 1 
 
Where the numbers of  decision statements 
are calculated as follows;  
i. Sum of  all selection statements which 

includes if/then, else if  but do not count 
the else statements in the program.  

ii. Identify all the switch statement and sum 
the cases in the program but do not 
count the default in the program.  

iii. Sum all the repetition like for, while and 
do-while statements and also all the try/
catch statements in the program.  

iv. Sum all conditional operator “and” and 
“or” operator and also ternary operators 
like?: from the statement. 

Then, whatever the value of  CC is will be 
tested as: 
 
if  (1< = CC< = 10)  Then  
“The program code is categorized as risk-free soft-
ware” 
Else if  (11< = CC< = 20)  Then 
“Software considered having a moderate-risk” 
Else if  (21< = CC< = 50)  Then 
“The software is having high-risk” 
Else  
“Considered as of  high-risk and even not testable 
software” 
End if. 
 

RESULTS AND DISCUSSION 
The system works by taking source code ar-
tefact written in any of  the programming 

 31  J. Nat. Sci. Engr. & Tech. 2021, 20(1): 24-36 



 A MULTILANGUAGE COMPLEXITY MEASUREMENT TOOL ... 

languages as an input, this was scanned to 
identify the Number of  Class/ Method 
(NOM) contained, the Source Line Of  
Code (SLOC), the Cyclomatic complexity 
value, the equivalent category and the ac-
quired file path. This is displayed as an out-
put for future decision making. 

CCT Tool Home Page  
This is the entry point (interface) of  the ap-
plication where users interact with it. It is the 
first page that shows up when the applica-
tion is launch. The page also contains the 
some information on how to use the tool 
(Figure 3). 

 32  

Figure 3: CCT Home Page 

Metric Result 
The tool accept input by drag and drop the 
folder containing the source code on the 

CCT tool home page for processing. The 
result of   the analyses is  displayed as shown  
(Figure 4). 

Figure 4: Interface of  complexity result of  the inputted Source Code 

J. Nat. Sci. Engr. & Tech. 2021, 20(1): 24-36 



 M. A. OGUNRINDE AND O. S. AKINOLA 

The part of  the tool where the input is ac-
cepted and at the same time displays the 
result of  the metrics after the processing 
(Figure 4). The interface is partitioned into 
columns, each of  which holds the results 
based on the following attributes:  
 
Category: The category column specified 
the level of  complexity of  the methods in 
the analysed code. It also gives a more de-
tailed description of  the complexity value. 
 
Unit: The Unit specifies and lists the name 
of  methods as identified in the source code 
program.  
 
Complexity: This column classifies the 
complexity value of  each of  the method as 
identified in the source using the McCabe‘s 
Cyclomatic complexity approach. 
 
SLOC: SLOC (Source Line of  Codes) indi-
cates the total number of  code lines for 
each of  the methods in the inputted source 
program.  
 
File: The file column indicates the paths to 
which the file containing the source pro-
gram is located 
 
Comparison with an Existing Tool 
The CMT was evaluated with an equivalent 
tool Code Metric (CM) embedded In Visual 
Studio using some open-source code, the 
following was observed; 
1) The developed tool accepts folder con-

taining all the files in a solution and sort 
for the appropriate file extension then 
measures the complexity while the Code 
Metrics of  Visual Studio expects the 
solutions alone. 

2) The developed tool and Code Metric in 
Visual Studio calculate the complexity 
the same way but Code Metric does not 

calculate for JavaScript language and did 
not present the category in which the 
complexity value of  each method be-
longs. 

3) The developed tool can calculate the 
complexity of  more than one solution or 
files that contain the targeted program-
ming language at once which proves the 
efficiency of  the tool while in embedded 
Visual Studio’s code metric; only one 
solution can be calculated at a time. 

4) In term of  speed, the developed tool 
calculates at a faster rate compares to 
Code Metrics in Visual Studio.  

 
Comparisons of  Findings with Related 
Existing Works in the Literature 
Results obtained in this study are in conso-
nance with the work of  Liu, et al., (2018) 
who showed that despite Cyclomatic com-
plexity approach to finding the complexity 
of  programming code been old, it remains a 
significant index to evaluate program code 
quality and ease of  maintenance for wide 
range of  programming languages. The Au-
thors also concluded that the measured cy-
clomatic complexity values will assist the 
software stakeholders in making critical deci-
sions such as predicting ease of  mainte-
nance, production cost and effort required. 
 

CONCLUSIONS  
In today’s software development businesses, 
producing quality and maintainable software 
takes a great step. Maintainability attributes 
are one of  the factors of  software quality. 
The complexity of  code has effects on 
maintenance activities like software testabil-
ity, reusability, understandability and modifia-
bility. Software metrics should be able to de-
termine the complexity of  code and give re-
ports on the modules that are likely to have 
problems in future. This research has devel-
oped and tested a Complexity Measurement 

 33  J. Nat. Sci. Engr. & Tech. 2021, 20(1): 24-36 



 A MULTILANGUAGE COMPLEXITY MEASUREMENT TOOL ... 

Tool (CMT) that supports four different 
programming languages which are C/C++, 
C# and JavaScript. The tool has useful im-
plications that could assist software design-
ers, programmers, testers and other stake-
holders in building quality software, right 
from the design stage till the maintenance 
stage. By using the developed complexity 
tool, the reliability, quality, and ease of  
maintenance of  software product will be 
greatly enhanced. Equivalent Cyclomatic 
Complexity Tool for web programming lan-
guages could be of  interest for future re-
search. This tool should be able to adjust to 
dynamically to changes in team configura-
tion and requirement at different phases 
during software lifecycle. 
 

REFERENCES 
Alenezi, M., Zarour, M. 2020. On the Re-
lationship between Software Complexity 
and Security. International Journal of  Software 
Engineering & Applications 11(1): 51–60. 
https://doi.org/10.5121/ijsea.2020.11104 
 
Antinyan, V., Staron, M., Hansson, J., 
Meding, W., Österström, P., Henriksson, 
A. 2014. Monitoring evolution of  code 
complexity and magnitude of  changes. Acta 
Cybernetica 21(3): 367–382. https://
doi.org/10.14232/actacyb.21.3.2014.6 
 
Antinyan, V., Staron, M., Meding, W., 
Österström, P., Bergenwall, H., 
Wranker, J., Hansson, J., Henriksson, A. 
2013. Monitoring evolution of  code com-
plexity in agile/lean software development: 
A case study at two companies. 13th Sympo-
sium on Programming Languages and Software 
Tools, SPLST pp.1–15. 
  
Ardito, L., Coppola, R., Barbato, L., Ver-
ga, D. 2020. A Tool-Based Perspective on 
Software Code Maintainability Metrics: A 

Systematic Literature Review. Scientific Pro-
g r a m m i n g  h t t p s : / /
doi.org/10.1155/2020/8840389 
 
De Silva, D. I. , Kodagoda, N., Perera, H. 
2012. Applicability of  three complexity met-
rics. In International Conference on Advances in 
ICT for Emerging Regions (ICTer2012), Colombo 
pp. 82–88. 
 
Debbarma, M. K., Debbarma, S., Deb-
barma, N., Chakma, K., Jamatia, A. 2013. 
A Review and Analysis of  Software Com-
plexity Metrics in Structural Testing. Interna-
tional Journal of  Computer and Communication 
Engineering 2(2): 129–133. 
 
Delange, J. 2015. Evaluating and Mitigating 
the Impact of  Complexity in Software Mod-
els.  http://www.sei.cmu.edu 
 
Gil, J. Y., Lalouche, G. 2016. When do 
software complexity metrics mean nothing?-
When examined out of  context. Journal of  
Object Technology 15(1): 1–25. https://
doi.org/10.5381/jot.2016.15.5.a2 
 
Gujar, C. R. 2019. Use and Analysis on Cy-
clomatic Complexity in Software Develop-
ment. International Journal of  Computer Applica-
tions Technology and Research 8(5): 153–156. 
https://doi.org/10.7753/ijcatr0805.1002 
 
IEEE Computer Society 2014. IEEE 
Standard for Software Quality Assurance 
Processes- IEEE Std 730™-2014 (Revision 
of  IEEE Std 730-2002) 
 
Liu, H., Gong, X., Liao, L., Li, B. 2018. 
Evaluate How Cyclomatic Complexity 
Changes in the Context of  Software Evolu-
tion. 2018 IEEE 42nd Annual Computer 
Software and Applications Conference 
(COMPSAC), 02, 756–761. https://

 34  J. Nat. Sci. Engr. & Tech. 2021, 20(1): 24-36 



 M. A. OGUNRINDE AND O. S. AKINOLA 

doi.org/10.1109/COMPSAC.2018.10332 
 
Madi, A., Zein, O. K., Kadry, S. 2013. On 
the improvement of  cyclomatic complexity 
metric. International Journal of  Software Engi-
neering and Its Applications 7(2): 67–82. 
 
Malhotra, M.P. 2015. Python Based Soft-
ware for Calculating Cyclomatic Complexi-
ty. International Journal of  Innovative Science, 
Engineering & Technology 2(3): 546–549. 
 
Meirelles, P., Santos, C., Miranda, J., 
Kon, F., Terceiro, A., Chavez, C. 2010. A 
study of  the relationships between source 
code metrics and attractiveness in free soft-
ware projects. In Proceedings - 24th Brazili-
an Symposium on Software Engineering, SBES  
pp. 11–20. https://doi.org/10.1109/
SBES.2010.27 
 
Miguel, J. P., Mauricio, D., Glen, R. 
2014. A Review of  Software Quality Models 
for the Evaluation of  Software Products. 
International Journal of  Software Engineering & 
Applications 5(6): 31–53. https://
doi.org/10.5121/ijsea.2014.5603 
 
Mohamed, N., Fitriyah, R., Sulaiman, 
R., Rohana, W., Endut, W. 2013. The Use 
of  Cyclomatic Complexity Metrics in Pro-
gramming Performance ’ s Assessment. Pro-
cedia - Social and Behavioral Sciences, 90
(InCULT 2012): 497–503. https://
doi.org/10.1016/j.sbspro.2013.07.119 
 
Ogheneovo, E. 2013. Software Mainte-
nance and Evolution: The Implication for 
Software Development. West African Journal 
of  Industrial and Academic  Research 7(1): 81–
92. Retrieved from http://www.ajol.info/
index.php/wajiar/article/view/91395 
 
Oliveira, C. D. De, Black, P. E., Fong, E. 

2017. Impact of  Code Complexity On Soft-
ware Analysis. National Institute of  Standards 
and Technology Kent Rochford. 
 
Omri, S., Montag, P., Sinz, C. 2018. Static 
Analysis and Code Complexity Metrics as 
Early Indicators of  Software Defects. Journal 
of  Software Engineering and Applications 11: 153
– 1 6 6 .  h t t p s : / / d o i . o r g / 1 0 . 4 2 3 6 /
jsea.2018.114010 
 
Ostberg J., Wagner, S. 2014. On automati-
cally collectable metrics for software main-
tainability evaluation, in Proceedings of  the 
2014 Joint Conference of  the International 
Workshop on Software Measurement and 
the International Conference on Software 
Process And Product Measurement, Rotter-
dam, 'e Netherlands, October 2014 
 
Pasrija, V., Kumar, S., Srivastava, P.R. 
2012. Assessment of  Software Quality: Cho-
quet Integral Approach. 2nd International Con-
ference on Communication, Computing & Security 
( ICCCS) ,  1 :  153–162 .  h t tp s ://
doi.org/10.1016/j.protcy.2012.10.019 
 
Serebrenik, A. 2011. Software metrics. 
2IS55 Software Evolution, (2). Retrieved from 
h t t p : / / w w w . w i n . t u e . n l /
~aserebre/2IS55/2013-2014/9.pdf 
 
Surendra, K. 2020. Cyclomatic Complexity 
in Software Development, International Journal 
of  Engineering Research & Technology (IJERT) 8
(16): 46-47, NCSMSD – 2020. 
 
Tashtoush, Y., Al-maolegi, M., Arkok, B. 
2014. The Correlation among Software 
Complexity Metrics with Case Study. Interna-
tional Journal of  Advanced Computer Research 4
(2 ) :  414–419 .  h t tps ://arx iv.org/
pdf/1408.4523.pdf 
 

 35  J. Nat. Sci. Engr. & Tech. 2021, 20(1): 24-36 



 A MULTILANGUAGE COMPLEXITY MEASUREMENT TOOL ... 

Tombe, R., Okeyo, G. 2014. Cyclomatic 
Complexity Metrics for Software Architec-
ture Maintenance Risk Assessment. Interna-
tional Journal of  Computer Science and Mobile 
Computing 3(11): 89–101. 
 

Ukić, N., Maras, J., Šerić, L. 2018. The 
influence of  cyclomatic complexity distribu-
tion on the understandability of  xtUML 
models. Software Quality Journal, 26(2): 273–
319. https://doi.org/10.1007/s11219-016-
9351-5 

 36  

(Manuscript received: 18th June, 2020; accepted: 24th August, 2021 )  

J. Nat. Sci. Engr. & Tech. 2021, 20(1): 24-36 


