
PERFORMANCE APPRAISAL OF TREAP AND HEAP
SORT ALGORITHMS

*1A. D. GBADEBO, 2A. T. AKINWALE AND 3S. AKINLEYE

*1Department of Computer Science, Michael Otedola College of Primary Education,
Noforija–Epe, Lagos State, Nigeria
2Department of Computer Science, Federal University of Agriculture, Abeokuta, Nigeria
3Department of Mathematics, Federal University of Agriculture, Abeokuta, Nigeria
*Corresponding Author:gbuyi2010@yahoo.com Tel.

insertion and deletion, they easily support
efficient searching, joining and splitting.

The application of a purely binary tree is a
data structure called a heap. Heaps are unu-
sual in the menagerie of tree structures in
that they represent trees as arrays rather than
linked structures. The value stored at any
node is at least as large as the values in its
two children. The most useful property of a
heap is that the largest node in the tree is
always at the root. This paper overviews the
basic functionalities of both treap and heap
sort. Consequently, we made an overview of
both algorithms and also compare time per-

ABSTRACT
The task of storing items to allow for fast access to an item given its key is an ubiquitous problem in
many organizations. Treap as a method uses key and priority for searching in databases. When the
keys are drawn from a large totally ordered set, the choice of storing the items is usually some sort of
search tree. The simplest form of such tree is a binary search tree. In this tree, a set X of n items is
stored at the nodes of a rooted binary tree in which some item y ϵ X is chosen to be stored at the root
of the tree. Heap as data structure is an array object that can be viewed as a nearly complete binary
tree in which each node of the tree corresponds to an element of the array that stores the value in the
node. Both algorithms were subjected to sorting under the same experimental environment and condi-
tions. This was implemented by means of threads which call each of the two methods simultaneously.
The server keeps records of individual search time which was the basis of the comparison. It was dis-
covered that treap was faster than heap sort in sorting and searching for elements using systems with
homogenous properties.

Keywords: Algorithm, heap, node, treap, tree

INTRODUCTION
A sorting algorithm is an algorithm that
puts elements of a list in a certain order.
The most – used arrangements are numeri-
cal and lexicographical orders. Most sorting
algorithms work by comparing the data be-
ing sorted. In some cases, it may be desira-
ble to sort a large chunk of data based on
only a portion of that data. The piece of
data actually used to determine the sorted
order is called the key. Although there are
many balanced trees which provide a wide
variety of low-cost operations on ordered
sets, only treap have the advantage of both
being simple and general – in addition to

J. Nat. Sci. Engr. & Tech. 2019, 18(1&2): 1-10 1

Journal of Natural
Science, Engineering

and Technology

ISSN:
Print - 2277 - 0593
Online - 2315 - 7461
© FUNAAB 2019

mailto::gbuyi2010@yahoo.com

A. D. GBADEBO, A. T. AKINWALE AND S. AKINLEYE

formance of both sorting methods with re-
gards to search time for items in similar da-
tabases under the same conditions.

LITERATURE REVIEW
Treaps
Treap was first described by Aragon and
Seidel (1989) as aportmanteau of tree and

heap. It is a Cartesian tree in which each key
is given a (randomly chosen) numeric priori-
ty.

 2

M
1

T
3

R
5

O
6

H
2

G
7

I

L
8

A
9

Figure 1: A sample treap showing search keys and priorities

Treap uses randomization to maintain bal-
ance in dynamically changing search trees.
Let X be a set of n items, each of which has
associated with it a key and a priority. The
keys are drawn from some totally ordered
universe and so are the priorities. The two
ordered universes need not be the same. A
treap for X is a rooted binary tree with
node set X that is arranged in in-order with
respect to the keys and in heap-order with
respect to the priorities (Aragon and Seidel
1989). “In-order” means that for any node
x in the tree y.key ≤ x.key for all y in the left
subtree of x and x.key≤ y.key for y in the
right subtree of x. “Heap-order” means that
for any node x with parent z, the relation
x.priority ≤ z.priority holds. It is easy to see
that for any set X, such a treap exist with
the assumption that all the priorities and all
the keys of the items in X are distinct. The

tree is completely filled on all levels except
possibly the lowest, which is filled from the
left up to a point. The left and right children
of the root are binary search trees for the
sets: X< = { x ϵ X | x.key<y.key } and X> =
{ x ϵ X | y.key>x.key} respectively.

Sequential algorithms
Seidel and Aragon (1996) cited in Blelloch
and Reid-Miller (2011)described how to per-
form many operations on treap. These in-
clude the following:

Split: To split a tree rooted in r by key value
a, split follows the in-order access path with
respect to the key value a until either it
reaches a node with key value a or a leaf
node. When the root key is less than a, the
root becomes the root of the “less than”
tree. Recursively, split splits the right of the

J. Nat. Sci. Engr. & Tech. 2019, 18(1&2): 1-10

PERFORMANCE APPRAISAL OF TREAP AND HEAP...

root by a and then makes the resulting tree
with keys less than a the new right child of
the root. It also makes the resulting tree
with keys greater than a the “greater than”
tree. Similarly, if the root key is greater than
a, split recursively splits the left child of the
root. If the root key is equal to a, split re-
turns the root; the left and right children as

the “less than” and “greater than” trees re-
spectively. The expected time to split a treap
into treaps of size n and m is O(lgn + lgm).
Fig. 2a shows a treap while fig. 2b shows the
result of a split on the treap shown in fig. 2a.

 3

3

M

9

M

6

P

4

Y

7

N

2

D

8

G

Figure 2a

3

M

9

M

6

P

4

Y

2

D

7

N

8

G

Figure 2b

(L, x, G) = split (T, key). Split T into two
trees, L with key values less than key and G
with key values greater than key. If T has a
node x with key value equal to key, then x is
also returned. The recursive pseudocode
implementation of split is given below.

procedure TREAP-SPLIT (T:treap, k:key,
T1, T2: treap)
TREAP-INSERT ((k, ∞), T)
[T1, T2] ← T → lchild, rchild]
Recursive pseudocode implementations of
split

Join:
To join two treaps T1 with keys less than a
andT2 with keys greater than a, join traverses

the right spine of T1 and the left spine of T2.
A left (right) spine is defined recursively as
the root plus the left (right) spine of the left
(right) subtree. To maintain the heap-order,
join interleaves pieces of the spine so that the
priorities descend all the way to a leaf. The
expected time to join two treaps of size n
and m is O(lgn + lgm).

T = join (T1, T2). Join T1 and T2into a single
tree T, where the largest key value in T1 is
less than the smallest key value in T2. The
recursive pseudocode implementation of join
is given below.

procedure TREAP-JOIN (T1, T2, T :treap)
T ← NEWNODE ()

J. Nat. Sci. Engr. & Tech. 2019, 18(1&2): 1-10

A. D. GBADEBO, A. T. AKINWALE AND S. AKINLEYE

T→ [lchild, rchild] ← [T1, T2]
ROOT - DELETE (T)
Recursive pseudocode implementation of
join.

Parallel algorithms
In the parallel setting, Blelloch and Reid-
Miller (2011) view each treap as an ordered
set of its keys and considered the following
operations.

Union: To maintain the heap-order, union
makes r the root with the largest priority,

the root of the result treap. If the key of r is
k, then to maintain the key in-order, union
splits the other treap by k into a “less than”
tree with key values less than k and “greater
than” tree with key values greater than k and
possibly a duplicate node with a key equal to
k. This recursively (and in parallel), it finds
the union of the left child of r and the less-
than tree and the union of the right child of r
and the greater-than tree. The result of the
two union operations becomes the left and
right subtrees of r.

 4

T = union (T1, T2). Derives the union of treaps T1 and T2 to form a new treap T.

Intersection: Galperin and Rivest (2003)
maintained that as with union, intersection
starts by splitting the treap with the smaller
priority root by k, the key of the root with
the greater priority. It then finds the inter-
section of the two left subtrees, which have
keys less than k and the intersection of the
two right subtrees which have keys greater
than k. If k appeared in both trees, then
these results become the left and right chil-
dren of root used to split. Otherwise, it re-
turns the join of the two recursive call re-
sults.

T = intersect (T1, T2). Derives the intersection of
treaps T1 and T2 to form a new treap T.

Difference: To find the difference of two
treapsT1, T2, Seidel and Aragon (1996) ex-
plain that diff splits the treap with the small-

er priority root by k, the key of the root of
the other treap. Then, it finds the difference
of the two left subtrees, which have keys less
than k, and the difference of the two right
subtrees which have keys greater than k.
Since difference is not symmetric, diff consid-
ers two instances viz: when T2 is the subtra-
hend (the set specifying what should be re-
moved) and when T2 is not, as specified by
the Boolean x2.is.subtr (Blelloch and Reid-
Miller, 2011). If T2 is the subtrahend and did
not contain k, then it sets the left and right
children of the root of T1, T1 to the results of
the recursive calls and returns this root. Oth-
erwise, it returns the join of the results of the
recursive calls.

 T = diff (T1, T2). Remove from T1 nodes
that have the same key values as node in T2, return-
ing its new root T.

Pseudocode of some other treap operations: creation, insertion, deletion and rota-
tion

function EMPTY-TREAP ():treap
tnull→[priority, lchild, rchild] ← [- ∞ tnull, tnull]
return(tnull)

J. Nat. Sci. Engr. & Tech. 2019, 18(1&2): 1-10

PERFORMANCE APPRAISAL OF TREAP AND HEAP...

Treap Operations of creation, insertion,
deletion and rotation. Call-by-reference se-
mantics was used. The global variable tnull
points to a sentinel node whose existence is
assumed.
[…]← […] denotes parallel assignment.

Heap sort
The (binary) heap data structure is an array
object that can be viewed as a nearly com-
plete binary tree as shown in Fig. 3. Each
node of the tree corresponds to an element
of the array that stores the value in the

node. The tree is completely filled on all lev-
els except possibly the lowest, which is filled
from the left up to a point. Melhornand Naher
(2002) explains that an array A that repre-
sents a heap is an object with two attributes:
length [A], which is the number of elements
in the array, and heap-size[A], the number of
elements in the heap stored within array A.
That is, although A[1 . . length[A]] may con-
tain valid numbers, no element past A[heap-
size[A]], where heap-size[A] ≤ length[A], is an
element of the heap.

 5

procedure TREAP-INSERT(k, p) : item, T :treap)
ifT =tnull then T ← NEWNODE ()
T→ [key, priority, lchild, rchild] ← [k, p, tnull, tnull]
else if k <T→ key then TREAP-INSERT ((k, p) , T→ lchild
if T→ lchild→priority> T→ prioritythen ROTATE-RIGHT (T)
else if k >T→ key then TREAP-INSERT ((k, p) , T→ rchild
if T→ rchild→priority> T→ prioritythen ROTATE-LEFT (T)
else(* key k already in treapT *)
procedure TREAP-DELETE (k: key, T :treap)
tnull→key ← k
REC-TREAP-DELETE (k, T)
procedure REC-TREAP-DELETE (k: key, T:treap)
if k < T→ keythen REC-TREAP-DELETE (k,T→ lchild)
else ifk > T→ keythen REC-TREAP-DELETE
(k, T→ rchild)
else ROOT - DELETE (T)
procedure ROOT-DELETE (T: treap)
if IS-LEAF-OR-NULL (T) then T ← tnull
else if T → lchild→ priority> T→ rchild→ prioritythen ROTATE-RIGHT (T)
ROTATE-DELETE (T→ rchild)
elseROTATE-LEFT (T)
ROOT-DELETE (T→ lchild)
procedureROTATE-LEFT (T:treap)
[T, T→ rchild, T →rchild→ lchild] ← [T→ rchild, T→ rchild→lchild, T]
procedureROTATE-RIGHT (T:treap)
[T, T→ lchild, T →lchild→ rchild] ← [T→ lchild, T→ lchild→rchild, T]
function IS-LEAF-OR-NULL (T:treap) : Boolean
return(T→ lchild= T→ rchild)
Source: Seidel and Aragon (2001)

J. Nat. Sci. Engr. & Tech. 2019, 18(1&2): 1-10

A. D. GBADEBO, A. T. AKINWALE AND S. AKINLEYE

In fig. 3a, the number within the circle at
each node in the tree is the value stored at

that node. The number above a node is the
corresponding index in the array.

 6

1
23

2
61

4
57

5
40

6
46

7
44

8
93

3
43

Figure 3a:A max-heap viewed as a binary tree

23 61 43 57 40 46 44 93

1 2 3 4 5 6 7 8

Figure 3b: A max-heap viewed as an array

MAX-HEAPIFY(A, i)
1 l ← LEFT(i)
2 r ← RIGHT(i)
3 if l ≤ heap-size[A] and A[l] >A[i]
4 then largest ←l
5 else largest ←i
6 if r ≤ heap-size[A] and A[r] > A
[largest]
7 then largest ←r
8 if largest _= i
9 then exchange A[i] ↔ A[largest]
10 MAX-HEAPIFY(A, largest)

 Action of MAX-HEAPIFY

At each step, the largest of the elements A[i],
A[LEFT(i)], and A[RIGHT(i)] is deter-
mined, and its index is stored in largest. If A
[i] is largest, then the subtree rooted at node
iis a max-heap and the procedure terminates.
Otherwise, one of the two children has the
largest element, and A[i] is swapped with A
[largest], which causes node i and its children
to satisfy the max-heap property. The node
indexed by largest, however, now has the
original value A[i], and thus the subtree root-
ed at largest may violate the maxheap property.
Consequently, MAX-HEAPIFY must be
called recursively on that subtree. The run-
ning time of MAX-HEAPIFY on a subtree

J. Nat. Sci. Engr. & Tech. 2019, 18(1&2): 1-10

PERFORMANCE APPRAISAL OF TREAP AND HEAP...

of size n rooted at given node iistheƟ(1)
time to fix up the relationships among the
elements A[i], A[LEFT(i)], and A[RIGHT
(i)], plus the time to run MAX-HEAPIFY
on a subtree rooted at one of the children
of node i. The children’s subtrees each have
size at most 2n/3. The worst case occurs
when the last row of the tree is exactly half
full and the running time of MAX-
HEAPIFY can therefore be described by
the recurrence.

Building a heap
The procedure MAX-HEAPIFY could be
used in a bottom-up manner to convert an
array A[1 . . n], where n = length[A], into a
max-heap. The procedure BUILD-MAX-
HEAP goes through the remaining nodes
of the tree and runs MAX-HEAPIFY on
each one.

BUILD-MAX-HEAP(A)
1 heap-size[A] ← length[A]
2 for i← _length[A]/2_ downto1
3 do MAX-HEAPIFY(A, i)

Procedure in building a heap
The time required by MAX-HEAPIFY
when called on a node of height h is O(h).

The heapsort algorithm
The heapsort algorithm starts by using
BUILD-MAX-HEAP to build a max-heap
on the input array A[1 . . n], where n = length
[A]. Since the maximum element of the ar-
ray is stored at the root A[1], it can be put
into its correct final position by exchanging
it with A[n]. If node n is discarded from the

heap (by decrementing heap-size[A]), A[1 . .
(n − 1)] can easily be made into a max-heap
(Cormen, et al 2002). The children of the root
remain max-heaps, but the new root element
may violate the max-heap property. All that
is needed to restore the max-heap property,
however, is one call to MAX-HEAPIFY(A,
1), which leaves a max-heap in A[1 . . (n −
1)]. The heap sort algorithm then repeats this
process for the maxheap of size n − 1 down
to a heap of size 2.

HEAPSORT(A)
1 BUILD-MAX-HEAP(A)
2 for i← length[A] downto2
3 do exchange A[1] ↔ A[i]
4 heap-size[A] ← heap-size[A] − 1
5 MAX-HEAPIFY(A, 1)

 The heap sort algorithm
Source: Mikkel(2008)

The HEAPSORT procedure takes time O(n
lgn), since the call to BUILD-MAXHEAP
takes time O(n) and each of the n − 1 calls to
MAX-HEAPIFY takes time O(lgn).

MATERIALS AND METHODS
Experimentation environment
The researchers created a database contain-
ing 500 files. Each of these files has arbitrary
numerical values. This was stored on a desk-
top computer with the properties indicated
in table 1. It was where data values are being
searched for using both treap and heap sort
simultaneously. The performance of both
methods gave rise to their comparison.

 7

Attributes Design
Processor Dual core 64 bits processor, 2.40GHz
Memory 4GB
Windows 8.1 Pro with Media Centre

Table 1: Structure of the experimentation environment

J. Nat. Sci. Engr. & Tech. 2019, 18(1&2): 1-10

A. D. GBADEBO, A. T. AKINWALE AND S. AKINLEYE

Implementation
Both algorithms were coded in java in order
to be used for searching and sorting data
stored in a given database which was used
for both methods. The data set used in the
experiment was randomly generated. Each
file was randomly loaded with different siz-
es of bytes of data. The implementation was
client-server based. The clients start the
program which generates two threads (i.e.
two processes). Each thread calls each
method: treap and heap sort. Arbitrary val-
ues were searched for using both methods

simultaneously under the same experimental
conditions. Time taken to search for and dis-
cover or otherwise the given values were
monitored and stored by the server. The ex-
periments were repeated ten times using
both methods simultaneously and an average
of sort times was taken.

RESULTS
The graphical representation of the result of
implementation of treap and heap sort algo-
rithms for searching for existing elements in
the database is as shown in fig. 4.

 8

Se
ar

ch
 ti

m
es

 (i
n

na
no

se
co

nd
s)

fo

r e
xi

st
in

g
ele

m
en

ts

Experimental sequence

Figure 4: Search times for existing elements in the database using treap and heap
 sort.

Se
ar

ch
 ti

m
es

 (i
n

na
no

se
co

nd
s)

fo
r e

xi
st

in
g

el
em

en
ts

Experimental sequence
Figure 5: Search times for non-existing elements in the database using treap and
 heap sort.

The graphical representation of the result of
implementation of treap and heap sort algo-

rithms for searching for non - existing ele-
ments in the database is as shown in fig. 5.

J. Nat. Sci. Engr. & Tech. 2019, 18(1&2): 1-10

PERFORMANCE APPRAISAL OF TREAP AND HEAP...

DISCUSSION
The comparison of search times for existing
elements using treap and heap sort is pre-
sented in fig. 4. Since time is an important
factor in many contemporary experiments,
treap took shorter time to search through
the database, discover and report the exist-
ence of an element in the database. It is ob-
vious from this figure that treap utilized
lesser time to search for items in the data-
base compared to heap sort. For instance,
in fig 4, while it took treap about 400 and
520 nanoseconds to search for the first and
tenth items, the same task took heap sort
about 435 and 560 nanoseconds respective-
ly. The expected height of a treap is O(lgn).
Consequently the expected time to search
for a value in the treap is O(lgn). The means
that a treap on n nodes is equivalent to a
randomly built binary search tree on n
nodes since assigning priorities to nodes as
they are inserted into the treap is the same
as inserting the n nodes in the increasing
order defined by their priorities. Assigning
the priorities randomly results in getting a
random order of n priorities, which is the
same as a random permutation of the n in-
puts. This can be viewed as inserting the n
items in random order. The time to search
for an item is O(h) where h is the height of
the tree. The comparison of search times
for non-existing elements using heap sort
and treap is presented in fig. 5. It is obvious
from this figure that treap utilized lesser
time to search through the database for an
element. In essence, treap took shorter time
in searching and reporting the existence or
otherwise of searched elements than heap
sort. The relative shorter time taken by
treap in searching and reporting the exist-
ence or otherwise of searched elements
than heap sort could be connected with the
use of priority when searching through the
database. This, no doubt, improved the per-

formance of treap in many applications relat-
ing to searching through databases. The high
speed involved in searching and sorting in
database may also be attributable to the fact
that treaps are self-balancing search trees
with randomized data structures.

CONCLUSION

The comparison of both methods indicates
that treap took shorter time for sorting com-
pared to heap sort. However, while heap sort
only uses a key to search and consequently
sort given data, treap uses a key and a priori-
ty to sort and search for given data. This en-
hances the efficiency of treap and thus gave
it a comparative advantage over heap sort.
Treap has the advantage of being faster in
terms of searching for given elements from
among elements in an array compared to
heap sort. In essence therefore, the use of
treap can be very instrumental considering
the vast expansion in technological require-
ments of today’s business world.

REFERENCES
Aragon, C.R. and Seidel, R. 1989. Ran-
domized Search Trees. Proceedings of the 30th
Symposium on Foundations of Computer Science
(FOCS) Washington, D.C.: IEEE Computer
Society Press, pp. 540–545.

Blelloch, G.E. and Reid-Miller, M. 2011.
Fast Set Operations Using Treaps. 10th An-
nual ACM Symposium: Proceedings of the 10th
ACM Symposium on Parallel Algorithms and Ar-
chitectures. New York, USA: ACM, pp. 16–26.

Cormen, H.T., Leiserson, C.E., Rivest,
R.L. and Stein, C. 2002. Introduction to Algo-
rithms 2nd Edition. The Massachusetts Institute
of Technology. pp. 150-157.

Galperin, I. and Rivest, R.L. 2003. Scape-
goat Trees. Proceedings of the 4th ACM-SIAM

 9 J. Nat. Sci. Engr. & Tech. 2019, 18(1&2): 1-10

A. D. GBADEBO, A. T. AKINWALE AND S. AKINLEYE

Symposium on Discrete Algorithms, 165-174.

Melhorn, K. and Naher, S. 2002. Algo-
rithm Design and Software Libraries: Re-
cent Development in the LEDA Project.
Algorithms, software, Architectures, Information
Processing. Vol. 9.Elsevier Science Publishers.

Mikkel, T. 2008. Faster deterministic sort-
ing and priority queues in linear space. Pro-
ceedings of the 9th ACM-SIAM Symposium on

Discrete Algorithms. pp. 550–555.

Seidel, R. and Aragon, C.R. 2001. Ran-
domized Strategies for Maintaining Balance
in Binary Search Trees. Algorithmica, 23: 218-
223.

Seidel, R. and Aragon, C.R. 1996. Ran-
domized Search Trees. Algorithmica, 16(4
&5): 464–497.

 10

(Manuscript received: 24th June, 2018; accepted: 24th September, 2019).

J. Nat. Sci. Engr. & Tech. 2019, 18(1&2): 1-10

