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insertion and deletion, they easily support 
efficient searching, joining and splitting. 
 
The application of a purely binary tree is a 
data structure called a heap. Heaps are unu-
sual in the menagerie of tree structures in 
that they represent trees as arrays rather than 
linked structures. The value stored at any 
node is at least as large as the values in its 
two children. The most useful property of a 
heap is that the largest node in the tree is 
always at the root. This paper overviews the 
basic functionalities of both treap and heap 
sort. Consequently, we made an overview of 
both algorithms and also compare time per-

ABSTRACT 
The task of storing items to allow for fast access to an item given its key is an ubiquitous problem in 
many organizations. Treap as a method uses key and priority for searching in databases. When the 
keys are drawn from a large totally ordered set, the choice of storing the items is usually some sort of 
search tree. The simplest form of such tree is a binary search tree. In this tree, a set X of n items is 
stored at the nodes of a rooted binary tree in which some item y ϵ X is chosen to be stored at the root 
of the tree. Heap as data structure is an array object that can be viewed as a nearly complete binary 
tree in which each node of the tree corresponds to an element of the array that stores the value in the 
node. Both algorithms were subjected to sorting under the same experimental environment and condi-
tions. This was implemented by means of threads which call each of the two methods simultaneously. 
The server keeps records of individual search time which was the basis of the comparison. It was dis-
covered that treap was faster than heap sort in sorting and searching for elements using systems with 
homogenous properties.  
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INTRODUCTION 
A sorting algorithm is an algorithm that 
puts elements of a list in a certain order. 
The most – used arrangements are numeri-
cal and lexicographical orders. Most sorting 
algorithms work by comparing the data be-
ing sorted. In some cases, it may be desira-
ble to sort a large chunk of data based on 
only a portion of that data. The piece of 
data actually used to determine the sorted 
order is called the key. Although there are 
many balanced trees which provide a wide 
variety of low-cost operations on ordered 
sets, only treap have the advantage of both 
being simple and general – in addition to 
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formance of both sorting methods with re-
gards to search time for items in similar da-
tabases under the same conditions.  
 

LITERATURE REVIEW 
Treaps 
Treap was first described by Aragon and 
Seidel (1989) as aportmanteau of tree and 

heap. It is a Cartesian tree in which each key 
is given a (randomly chosen) numeric priori-
ty. 
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Figure 1: A sample treap showing search keys and priorities 

Treap uses randomization to maintain bal-
ance in dynamically changing search trees. 
Let X be a set of n items, each of which has 
associated with it a key and a priority. The 
keys are drawn from some totally ordered 
universe and so are the priorities. The two 
ordered universes need not be the same. A 
treap for X is a rooted binary tree with 
node set X that is arranged in in-order with 
respect to the keys and in heap-order with 
respect to the priorities (Aragon and Seidel 
1989).  “In-order” means that for any node 
x in the tree y.key ≤ x.key for all y in the left 
subtree of x and x.key≤ y.key for y in the 
right subtree of x. “Heap-order” means that 
for any node x with parent z, the relation 
x.priority ≤ z.priority holds. It is easy to see 
that for any set X, such a treap exist with 
the assumption that all the priorities and all 
the keys of the items in X are distinct.  The 

tree is completely filled on all levels except 
possibly the lowest, which is filled from the 
left up to a point. The left and right children 
of the root are binary search trees for the 
sets: X< = { x ϵ X | x.key<y.key } and X> = 
{ x ϵ X | y.key>x.key} respectively. 
 
Sequential algorithms 
Seidel and Aragon (1996) cited in Blelloch 
and Reid-Miller (2011)described how to per-
form many operations on treap. These in-
clude the following: 
 
Split: To split a tree rooted in r by key value 
a, split follows the in-order access path with 
respect to the key value a until either it 
reaches a node with key value a  or a leaf 
node. When the root key is less than a, the 
root becomes the root of the “less than” 
tree. Recursively, split splits the right of the 
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root by a and then makes the resulting tree 
with keys less than a the new right child of 
the root. It also makes the resulting tree 
with keys greater than a the “greater than” 
tree. Similarly, if the root key is greater than 
a, split recursively splits the left child of the 
root. If the root key is equal to a, split re-
turns the root; the left and right children as 

the “less than” and “greater than” trees re-
spectively. The expected time to split a treap 
into treaps of size n and m is O(lgn + lgm). 
Fig. 2a shows a treap while fig. 2b shows the 
result of a split on the treap shown in fig. 2a. 
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Figure 2b 

(L, x, G) = split (T, key). Split T into two 
trees, L with key values less than key and G 
with key values greater than key. If T has a 
node x with key value equal to key, then x is 
also returned. The recursive pseudocode 
implementation of split is given below. 
 
procedure TREAP-SPLIT (T:treap, k:key, 
T1, T2: treap) 
TREAP-INSERT  (  (k, ∞ ), T ) 
[ T1, T2 ] ←  T  → lchild, rchild ] 
Recursive pseudocode implementations of 
split 
 
Join: 
To join two treaps T1 with keys less than a 
andT2 with keys greater than a, join traverses 

the right spine of T1 and the left spine of T2. 
A left (right) spine is defined recursively as 
the root plus the left (right) spine of the left 
(right) subtree. To maintain the heap-order, 
join interleaves pieces of the spine so that the 
priorities descend all the way to a leaf. The 
expected time to join two treaps of size n 
and m is O(lgn + lgm). 
 
T = join (T1, T2). Join T1 and T2into a single 
tree T, where the largest key value in T1 is 
less than the smallest key value in T2. The 
recursive pseudocode implementation of join 
is given below. 
 
procedure TREAP-JOIN (T1, T2, T :treap ) 
T  ← NEWNODE ( ) 
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T→  [lchild, rchild ]  ← [ T1, T2 ] 
ROOT - DELETE  ( T ) 
Recursive pseudocode implementation of 
join. 
 
Parallel algorithms 
In the parallel setting, Blelloch and Reid-
Miller (2011) view each treap as an ordered 
set of its keys and considered the following 
operations.  
 
Union: To maintain the heap-order, union 
makes r the root with the largest priority, 

the root of the result treap. If the key of r is 
k, then to maintain the key in-order, union 
splits the other treap by k into a “less than” 
tree with key values less than k and “greater 
than” tree with key values greater than k and 
possibly a duplicate node with a key equal to 
k. This recursively (and in parallel), it finds 
the union of the left child of r and the less-
than tree and the union of the right child of r 
and the greater-than tree. The result of the 
two union operations becomes the left and 
right subtrees of r. 

 4 

T = union (T1, T2). Derives the union of treaps T1 and T2 to form a new treap T. 

Intersection: Galperin and Rivest (2003) 
maintained that as with union, intersection 
starts by splitting the treap with the smaller 
priority root by k, the key of the root with 
the greater priority. It then finds the inter-
section of the two left subtrees, which have 
keys less than k and the intersection of the 
two right subtrees which have keys greater 
than k. If k appeared in both trees, then 
these results become the left and right chil-
dren of root used to split. Otherwise, it re-
turns the join of the two recursive call re-
sults. 
 
T = intersect (T1, T2). Derives the intersection of 
treaps T1 and T2 to form a new treap T. 
 
Difference: To find the difference of two 
treapsT1, T2, Seidel and Aragon (1996) ex-
plain that diff splits the treap with the small-

er priority root by k, the key of the root of 
the other treap. Then, it finds the difference 
of the two left subtrees, which have keys less 
than k, and the difference of the two right 
subtrees which have keys greater than k. 
Since difference is not symmetric, diff consid-
ers two instances viz: when T2 is the subtra-
hend (the set specifying what should be re-
moved) and when T2 is not, as specified by 
the Boolean x2.is.subtr (Blelloch and Reid-
Miller, 2011). If T2 is the subtrahend and did 
not contain k, then it sets the left and right 
children of the root of T1, T1 to the results of 
the recursive calls and returns this root. Oth-
erwise, it returns the join of the results of the 
recursive calls. 
 
 T = diff (T1, T2). Remove from T1 nodes 
that have the same key values as node in T2, return-
ing its new root T. 

Pseudocode of some other treap operations: creation, insertion, deletion and rota-
tion 
 
function EMPTY-TREAP ( ):treap 
tnull→[ priority, lchild, rchild ]  ←  [ - ∞ tnull, tnull] 
return(tnull ) 
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Treap Operations of creation, insertion, 
deletion and rotation. Call-by-reference se-
mantics was used. The global variable tnull 
points to a sentinel node whose existence is 
assumed.  
[ … ]← [ … ] denotes parallel assignment. 
 
Heap sort  
The (binary) heap data structure is an array 
object that can be viewed as a nearly com-
plete binary tree as shown in Fig. 3. Each 
node of the tree corresponds to an element 
of the array that stores the value in the 

node. The tree is completely filled on all lev-
els except possibly the lowest, which is filled 
from the left up to a point. Melhornand Naher
(2002) explains that an array A that repre-
sents a heap is an object with two attributes: 
length [A], which is the number of elements 
in the array, and heap-size[A], the number of 
elements in the heap stored within array A. 
That is, although A[1 . . length[A]] may con-
tain valid numbers, no element past A[heap-
size[A]], where heap-size[A] ≤ length[A], is an 
element of the heap. 
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procedure TREAP-INSERT( k, p ) : item,  T :treap ) 
ifT  =tnull then T   ← NEWNODE ( ) 
T→  [key, priority, lchild, rchild ] ←  [k, p, tnull, tnull] 
else if k <T→ key then TREAP-INSERT ( ( k, p ) , T→ lchild 
if T→ lchild→priority> T→ prioritythen ROTATE-RIGHT (  T ) 
else if k >T→ key then TREAP-INSERT ( ( k, p ) , T→ rchild 
if T→ rchild→priority> T→ prioritythen ROTATE-LEFT (  T ) 
else( * key k already in treapT *) 
procedure TREAP-DELETE ( k: key, T :treap ) 
tnull→key ← k 
REC-TREAP-DELETE ( k, T ) 
procedure REC-TREAP-DELETE ( k:  key,  T:treap ) 
if k < T→ keythen REC-TREAP-DELETE (k,T→ lchild)  
else ifk > T→ keythen REC-TREAP-DELETE 
( k, T→ rchild ) 
else ROOT - DELETE ( T ) 
procedure ROOT-DELETE ( T: treap ) 
if IS-LEAF-OR-NULL ( T ) then T   ←  tnull 
else if T → lchild→ priority> T→ rchild→ prioritythen ROTATE-RIGHT ( T ) 
ROTATE-DELETE ( T→ rchild ) 
elseROTATE-LEFT ( T ) 
ROOT-DELETE ( T→ lchild ) 
procedureROTATE-LEFT ( T:treap ) 
[ T, T→ rchild, T →rchild→ lchild] ← [ T→ rchild, T→ rchild→lchild,  T ] 
procedureROTATE-RIGHT ( T:treap ) 
[ T, T→ lchild, T →lchild→ rchild] ← [ T→ lchild, T→ lchild→rchild,  T ] 
function IS-LEAF-OR-NULL ( T:treap ) : Boolean 
return( T→ lchild= T→ rchild ) 
Source: Seidel and Aragon (2001) 
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In fig. 3a, the number within the circle at 
each node in the tree is the value stored at 

that node. The number above a node is the 
corresponding index in the array. 
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Figure 3a:A max-heap viewed as a binary tree  
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Figure 3b: A max-heap viewed as an array 

MAX-HEAPIFY(A, i ) 
1  l ← LEFT(i ) 
2 r ← RIGHT(i ) 
3  if l ≤ heap-size[A] and A[l] >A[i] 
4  then largest ←l 
5  else largest ←i 
6  if r ≤ heap-size[A] and A[r] > A
[largest] 
7  then largest ←r 
8  if largest _= i 
9  then exchange A[i] ↔ A[largest] 
10  MAX-HEAPIFY(A, largest) 

 Action of MAX-HEAPIFY 
 
 

At each step, the largest of the elements A[i], 
A[LEFT(i )], and A[RIGHT(i )] is deter-
mined, and its index is stored in largest. If A
[i] is largest, then the subtree rooted at node 
iis a max-heap and the procedure terminates. 
Otherwise, one of the two children has the 
largest element, and A[i] is swapped with A
[largest], which causes node i and its children 
to satisfy the max-heap property. The node 
indexed by largest, however, now has the 
original value A[i], and thus the subtree root-
ed at largest may violate the maxheap property. 
Consequently, MAX-HEAPIFY must be 
called recursively on that subtree. The run-
ning time of MAX-HEAPIFY on a subtree 
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of size n rooted at given node iistheƟ(1) 
time to fix up the relationships among the 
elements A[i], A[LEFT(i )], and A[RIGHT
(i )], plus the time to run MAX-HEAPIFY 
on a subtree rooted at one of the children 
of node i. The children’s subtrees each have 
size at most 2n/3. The worst case occurs 
when the last row of the tree is exactly half 
full and the running time of MAX-
HEAPIFY can therefore be described by 
the recurrence.  
 
Building a heap 
The procedure MAX-HEAPIFY could be 
used in a bottom-up manner to convert an 
array A[1 . . n], where n = length[A], into a 
max-heap. The procedure BUILD-MAX-
HEAP goes through the remaining nodes 
of the tree and runs MAX-HEAPIFY on 
each one. 
 
BUILD-MAX-HEAP(A) 
1  heap-size[A] ← length[A] 
2  for i← _length[A]/2_ downto1 
3 do MAX-HEAPIFY(A, i ) 
 
Procedure in building a heap 
The time required by MAX-HEAPIFY 
when called on a node of height h is O(h).  
 
The heapsort algorithm 
The heapsort algorithm starts by using 
BUILD-MAX-HEAP to build a max-heap 
on the input array A[1 . . n], where n = length
[A]. Since the maximum element of the ar-
ray is stored at the root A[1], it can be put 
into its correct final position by exchanging 
it with A[n]. If  node n is discarded from the 

heap (by decrementing heap-size[A]),  A[1 . . 
(n − 1)] can easily be made into a max-heap 
(Cormen, et al  2002). The children of the root 
remain max-heaps, but the new root element 
may violate the max-heap property. All that 
is needed to restore the max-heap property, 
however, is one call to MAX-HEAPIFY(A, 
1), which leaves a max-heap in A[1 . . (n − 
1)]. The heap sort algorithm then repeats this 
process for the maxheap of size n − 1 down 
to a heap of size 2. 
 
HEAPSORT(A) 
1  BUILD-MAX-HEAP(A) 
2  for i← length[A] downto2 
3  do exchange A[1] ↔ A[i] 
4  heap-size[A] ← heap-size[A] − 1 
5  MAX-HEAPIFY(A, 1) 

 The heap sort algorithm 
Source: Mikkel(2008) 
 
The HEAPSORT procedure takes time O(n 
lgn), since the call to BUILD-MAXHEAP 
takes time O(n) and each of the n − 1 calls to 
MAX-HEAPIFY takes time O(lgn). 
 

MATERIALS AND METHODS 
Experimentation environment 
The researchers created a database contain-
ing 500 files. Each of these files has arbitrary 
numerical values. This was stored on a desk-
top computer with the properties indicated 
in table 1. It was where data values are being 
searched for using both treap and heap sort 
simultaneously. The performance of both 
methods gave rise to their comparison. 
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Attributes Design 
Processor Dual core 64 bits processor,  2.40GHz 
Memory 4GB 
Windows 8.1 Pro with Media Centre 

Table 1: Structure of the experimentation environment  
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Implementation 
Both algorithms were coded in java in order 
to be used for searching and sorting data 
stored in a given database which was used 
for both methods.  The data set used in the 
experiment was randomly generated. Each 
file was randomly loaded with different siz-
es of bytes of data. The implementation was 
client-server based. The clients start the 
program which generates two threads (i.e. 
two processes). Each thread calls each 
method: treap and heap sort. Arbitrary val-
ues were searched for using both methods 

simultaneously under the same experimental 
conditions. Time taken to search for and dis-
cover or otherwise the given values were 
monitored and stored by the server. The ex-
periments were repeated ten times using 
both methods simultaneously and an average 
of sort times was taken. 
 

RESULTS 
The graphical representation of the result of 
implementation of treap and heap sort algo-
rithms for searching for existing elements in 
the database is as shown in fig. 4. 
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Figure 4: Search times for existing elements in the database using treap and heap  
                sort. 
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Figure 5: Search times for non-existing elements in the database using treap and  
                heap sort. 

The graphical representation of the result of 
implementation of treap and heap sort algo-

rithms for searching for non - existing ele-
ments in the database is as shown in fig. 5. 
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DISCUSSION 
The comparison of search times for existing 
elements using treap and heap sort is pre-
sented in fig. 4. Since time is an important 
factor in many contemporary experiments, 
treap took shorter time to search through 
the database, discover and report the exist-
ence of an element in the database. It is ob-
vious from this figure that treap utilized 
lesser time to search for items in the data-
base compared to heap sort. For instance, 
in fig 4, while it took treap about 400 and 
520 nanoseconds to search for the first and 
tenth items, the same task took heap sort 
about 435 and 560 nanoseconds respective-
ly. The expected height of a treap is O(lgn). 
Consequently the expected time to search 
for a value in the treap is O(lgn). The means 
that a treap on n nodes is equivalent to a 
randomly built binary search tree on n 
nodes since assigning priorities to nodes as 
they are inserted into the treap is the same 
as inserting the n nodes in the increasing 
order defined by their priorities. Assigning 
the priorities randomly results in getting a 
random order of n priorities, which is the 
same as a random permutation of the n in-
puts. This can be viewed as inserting the n 
items in random order. The time to search 
for an item is O(h) where h is the height of 
the tree. The comparison of search times 
for non-existing elements using heap sort 
and treap is presented in fig. 5. It is obvious 
from this figure that treap utilized lesser 
time to search through the database for an 
element. In essence, treap took shorter time 
in searching and reporting the existence or 
otherwise of searched elements than heap 
sort.  The relative shorter time taken by 
treap in searching and reporting the exist-
ence or otherwise of searched elements 
than heap sort could be connected with the 
use of priority when searching through the 
database. This, no doubt, improved the per-

formance of treap in many applications relat-
ing to searching through databases. The high 
speed involved in searching and sorting in 
database may also be attributable to the fact 
that treaps are self-balancing search trees 
with randomized data structures.  

 
CONCLUSION 

The comparison of both methods indicates 
that treap took shorter time for sorting com-
pared to heap sort. However, while heap sort 
only uses a key to search and consequently 
sort given data, treap uses a key and a priori-
ty to sort and search for given data. This en-
hances the efficiency of treap and thus gave 
it a comparative advantage over heap sort. 
Treap has the advantage of being faster in 
terms of searching for given elements from 
among elements in an array compared to 
heap sort. In essence therefore, the use of 
treap can be very instrumental considering 
the vast expansion in technological require-
ments of today’s business world.  
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