
nonsingular. The elements of the vector P of 
the mixing proportions for the populations 
sum up to 1. 

ABSTRACT 
This study investigated the performance of the heteroscedastic discriminant function under the non-
optimal condition of unbalanced group representation in the populations. The asymptotic performance 
of the classification function with respect to increased Mahalanobis’ distance (under this condition) 
was considered. Results obtained have shown that the misclassification of observations from the 
smaller group escalates when the sample size ratio 1:2 is exceeded (for small sample sizes). Results 
also show more sensitivity to sample size than the distance function when the data set is balanced, 
while the performance of the function in the classification of the underrepresented group improved by 
increasing the distance function. More robustness with unbalanced data was also observed with the 
Quadratic Function than the Linear Discriminant Function. 
 
Keywords: Heteroscedastic, Unbalanced data, Discriminant function, prior probabilities, 
Misclassification 
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Erratum  

INTRODUCTION 
In this study we restrict ourselves to the two group classification problem when the covari-

ance structures and mean vectors are unequal. We define two groups  and  with 

Multivariate Normal density functions  and  respectively.   

 and    where and . The  
group conditional density fi(Xi, θi) is given by 

 

       .........................................(1) 
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and θi consists of the elements of μi and the 
(1/2)P(P + 1) distinct elements of Σi (i =1, 
....., g). It is assumed that each Σi  is 
nonsingular. The elements of the vector P 
of the mixing proportions for the popula-
tions sum up to 1. 
Observations from these groups constitute 
the training sample. A classification func-

tion will be constructed using the training 
sample on the basis of which future observa-
tions (of unknown group memberships) will 
be classified. This is done by comparing the 
function to a predetermined cut-off value. 
The procedure is often utilized (but not lim-
ited to) the Social Sciences, Medical sciences, 
Education and Psychology.  
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                    (2.1) 

This reduces to 

                                                                                                                         
                                                                                                                                       (2.2) 

This is a quadratic classification function here after referred to as the Quadratic Discrimi-
nant 
Function (QDF). This function contains population parameters and the sample estimates 

will be obtained from the training data. is the general equation. Equation (2.2) 
above can be written as 
Q(x) = x/ Ax + b/ x + c                                                 (2.3) 

Where 

  

                                 (2.4) 

 
 

The quadratic 

        (2.5) 
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is the squared Mahalanobis’ distance be-
tween x and μi with respect to Σ. 
The cut-off point is determined by the log 
ratios of the costs of misclassification and 

prior probabilities. We define  
as the cost of misclassifying an observed 
vector as belonging to group Ri when it ac-
tually belongs to Rj  and C(j|i) as the con-
verse.  
 
Consequently, C(i|i) = C(j|j) = 0. Also, the 

assumption C(j|i) = C(i|j) is the exception 
and not the norm in practice. This rule is 
however regularly applied when the misclas-
sification costs are unknown. 
 
Let Pi  i=1, 2 be the prior probability of an 
observation belonging to group Ri  and this 
information is often obtained from the train-
ing sample composition. An observed P-
variate vector x is assigned to R1 if 
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        (2.6) 
The total probability of misclassification (TPM) gives a measure of the performance of the 
function. This is a proportion of misclassified observations from the training sample and is 
given as 

   
   (2.7) 

Denote  where  and  are the distributions that generated the train-
ing samples, the TPM using the QDF will be represented as 

       (2.8) 
where 
A(R0) = (1/2)[C2(R0)-1 – C1(R0)-1]        (2.9) 
b(R0) = C1(R0)-1T1(R0)-1 – C2(R0)-1T2(R0)-1       (2.10) 
c(R0) = (1/2)log(|C2(R0)||C1(R0)| +(1/2)(T2(R0)/C2(R0)-1T2(R0) 

 − T1(R0)/C1(R0)-1T1(R 0))       (2.11) 
This is analogous to the quadratic function and equations 2.9 to 2.11 are the values of a lo-

cation function T at the distributions  and . 

 That is,  and .Similarly, C1(R0) and C2(R0) are the 

values of the covariance matrix function C at the distributions  and . 

 Thus,  and when the data follows a normal 
distribution, 
T1(R0) = μ1, T2(R0) = μ2, C1(R0) = Σ1 and C2(R0) = Σ2 (Joossens[5]). 
McFarland and Richards[7] have provided exact misclassification probabilities for the finite 
sample from a normal distribution. The future data is supposed to be a normal mixture of 
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The Simulation Experiment 
We con s ide r  t wo po p u la t ion s 

 and  with  
μ1 =[0,0,0,0] and μ2 = [δ,0,0,0], Σ1 =I and Σ2 
= kI. For our case we set k = 6 (Adebanji 
and Nokoe[1]) and  δ = 1, 2, 3 and 4. Dif-
ferent values of δ are considered to see if 
there is any observable change in the per-
formance of the functions from very close 
samples to well separated samples. Twenty 
one sample sizes (ranging from 25 to 500) 

are generated for  and the number of 
corresponding observations generated from 

 is determined by the sample size ratio 
composition under consideration. We con-

sider = 1:1, 1:2, 1:3 and 1:4; that is 
from balanced to extremely unbalanced data 
sets. The large sample sizes are considered 
in order to enable us observe the perfor-
mance of the QDF when the population 
parameters are known. 
 
The four sample size ratio combinations 
were considered for every value of δ under 
consideration. Random samples are generat-
ed and 100 replications of each sample 
specification is generated using SAS V(8) 
(1996). The large number of replications 
minimizes between sample variability. The 
QDF is constructed and the leave-one-out 
error rate est imation procedure 
(Lachembruch and Mickey[6])is used for 
estimating the TPM. 
 

Results of Simulation 
In the results, the total probability of mis-
classification (averaged over 100 replications) 
is denoted as decimals, and the associated 
standard deviations (SD) are also denoted as 
decimals. The coefficient of variation (CV) 
(denoted as percentages) are presented. Re-
sults are also presented for different values 
of δ and sample size ratio combinations. 
 

Scheme 1: Equal Sample sizes (
=1:1) 
When the sample size ratios are equal, the 
performance of the function for group G1 
with an identity covariance structure is slight-
ly better than that for G2  with the covariance 
structure Σ=kI though not significantly dif-
ferent in values. Higher reduction in error 
rates and SD was observed for increased 
sample sizes than for increase in the δ value. 
The results 
stabilized around sample size 1200 beyond 
which no significant improvement was rec-
orded in the performance of the function. 
 
Scheme 2: Unequal Sample sizes (

=1:2) 

The ratio of the error rates for was 
1:5 and this increased to 1:10 when the sam-
ple size 1200 was attained for δ=1. This high 
misclassification of the under-represented 
group underscored the improvement in the 
performance of the function as can be ob-
served from the total error rates. The SD 
shows a steady decline to sample size 900 at 
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the training data and the observations of unknown group membership. This gives a TPM 
for the mixture as 
TPM(R0, R) = P1 C(2|1)(R0, R) + P2C(1|2)(R0, R)     (2.12) 
The theoretical derivations have been provided by Jossens[5], McFarlan and Richards [7] 
and McLachlan [8]. 
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which it stabilizes. The CV reduces more 
gradually to sample size 1200 and remained 
stable afterwards. For δ=2, the ratio was 1:3 
for smaller sample sizes and 1:6 when the 

sample size 1200 was attained. For δ=3, the 
ratio increased to 1:4 and similar results was 
observed for δ=4. The group error rates for 
this scheme are presented in table 4.1. 
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Table 1: Group Error for δ = 1, 2, 3 and 4( = 1 : 2) 
    δ = 1 δ = 2 δ = 3 δ = 4 
n1 Sample 

Size 
G1 G2 G1 G2 G1 G2 G1 G2 

25 75 0.306 0.065 0.231 0.086 0.146 0.082 0.115 0.053 
50 225 0.305 0.047 0.230 0.047 0.151 0.048 0.114 0.031 
75 225 0.305 0.032 0.225 0.043 0.151 0.047 0.114 .029 
100 300 0.304 0.033 0.228 0.044 0.170 0.037 0.113 0.030 
200 600 0.303 0.029 0.228 0.042 0.148 0.046 0.113 0.027 
300 900 0.302 0.026 0.227 0.040 0.168 0.036 0.113 0.028 
400 1200 0.301 0.027 0.225 0.040 0.157 0.039 0.112 0.027 

Scheme 3: Unequal Sample sizes  

( =1:3) 

The ratio of the error rates for δ = 1 
increased from 1:9 to 1:26 at sample size 
1200, for δ = 2, it rose from 1:4 to 1:9. At δ 
= 3, the change was from 1:4 to 1:6 and 1:2 
to 1:4 for δ = 4. The high error rate for the 

smaller group further underscores the per-
formance of the function. There was a steady 
reduction in the SD until sample size 800 
beyond which it remained relatively constant. 
A similar pattern was observed for the CV 
which recorded only a slight improvement 
beyond sample size 800. Refer to table 4.2 
below for the group error rates. 

Table 2: Group Error for δ = 1, 2, 3 and 4( =1:3) 
    δ = 1 δ = 2 δ = 3 δ = 4 
n1 Sample 

Size 
G1 G2 G1 G2 G1 G2 G1 G2 

25 100 0.412 0.043 0.279 0.065 0.193 0.054 0.139 0.046 
50 200 0.412 0.027 0.283 0.045 0.195 0.054 0.135 0.033 
75 300 0.411 0.018 0.284 0.042 0.195 0.044 0.133 0.029 
100 400 0.410 0.020 0.299 0.036 0.205 0.038 0.127 0.032 
200 800 0.410 0.016 0.280 0.040 0.193 0.039 0.125 0.032 
300 1200 0.409 0.016 0.297 0.031 0.204 0.035 0.122 0.031 
400 1600 0.409 0.016 0.288 0.035 0.198 0.034 0.084 0.044 
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Scheme 4: Unequal Sample sizes            

( =1:4) 

The widening in the gap of the ratio 

 was not as rapid as had earlier been 

observed. For δ = 1 the increase was from 
1:9 to 1:11, while for δ = 2, 3 and 4 the rec-
orded values were 1:4 to 1:7, 1:6 to 1:8 and 
1:5 to 1:9 respectively. See table 4.3 below 
for details of change in 
error rates. 
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Table 3: Group Error for δ = 1, 2, 3 and 4(n1 : n2=1:4) 

    δ = 1 δ = 2 δ = 3 δ = 4 
n1 Sample 

Size 
G1 G2 G1 G2 G1 G2 G1 G2 

25 125 0.426 0.049 0.351 0.047 0.105 0.018 0.179 0.036 
50 250 0.423 0.048 0.348 0.034 0.098 0.017 0.178 0.027 
75 375 0.427 0.048 0.351 0.033 0.091 0.017 0.178 0.027 
100 500 0.442 0.046 0.363 0.027 0.093 0.012 0.178 0.022 
200 1000 0.424 0.047 0.348 0.030 0.089 0.016 0.169 0.025 
300 1500 0.440 0.047 0.361 0.025 0.087 0.016 0.177 0.020 
400 2000 0.432 0.047 0.355 0.028 0.087 0.015 0.177 0.020 

Figures 

The graphs for the total (mean) error rates, 
standard deviation (SD) and coefficient of 
variation are presented in a series of figures 
1.1 to 4.3. Figures 1.1, 1.2 and 1.3 are the 
graphs of the mean error rates, SD and CV 
for the balanced data set. Figures 2.1, 2.2 

and 2.3 represent the mean error rates, SD 

and CV for sample size composition 
=1:2. The graphs for sample size ratios 1:3 
and 1:4 are presented in figures 3.1 to 3.3 
and 4.1 to 4.3 respectively. 
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DISCUSSION 
When the data set is balanced, the QDF 
benefits more from increase in sample size 
than increase in the distance function. More 
robustness was also observed in using the 
function for unbalanced data over the linear 
discriminant function (Adebanji et al) [2]. 
The performance of the function in classify-
ing unbalanced data also improved signifi-
cantly when the between group squared dis-
tance is relatively large (i.e. data sets are well 
separated). The performance however dete-
riorates in classifying the smaller group 
when the total sample size is large. 
 

CONCLUSION 
In conclusion, using of the QDF for the 
classification of unbalanced data will not be 
recommended beyond sample size ratio 1:2 
when the data sets are relatively close, and 
ratio 1:3 when the observations are well 
separated (subject to moderate sample size). 
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