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1982; Shah et al, 2014; Awogbemi and Ajao, 
2011; Maku and Adelowokan, 2013). In Ni-
geria, the inflation rate is not stable; its wan-
ton behaviour further emphasizes the need 
for it to be predicted for effective decision 
making and routine running of businesses. 
For instance, Nigeria’s inflation rate moved 
from 13% in the second quarter to 13.7% in 
the third quarter of 2010 (CBN, 2010). Nu-
merous applications, such as in finance and 
engineering, also require either the estima-
tion, prediction or modelling of noisy time 
series. Prediction is concerned with using all 
available data to approximate a future value 
of the series. Inflation is marked by an in-
crease in the general level of prices or a de-

ABSTRACT 
Inflation measure is an important indicator of the state of an economy and the desire to determine it 
ahead of “time” cannot be overemphasised. This paper presents a step-by-step algorithm to predict 
the would-be monthly inflation rate of the Nigerian economy, using Kalman Filtering Predictor (KFP). 
The ordinary structural model for a time series (structTS) is highlighted to “fairly” compete against our 
proposed KFP. The structTS is a powerful “competitor”, it is in recommended R package “stats” and 
used for fitting basic structural models to “univariate” time series. It is quite reliable and fast, and is 
used as a benchmark in some comparisons of filtering techniques, it is indeed the “predictor” to “beat”, 
yet our proposed KFP has more to “offer”. The pertinent statistics and pictorial representation of the 
results obtained, through both techniques, is highlighted for any “incorruptible” judge’s perusal. All of 
these are contained in the couple of illustrative examples that exhibit the steps involved in the pro-
posed algorithm, using a hypothetical monthly inflation rate and the monthly inflation rates data 
(January, 2011 to June, 2014) of the Nigerian economy. 
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INTRODUCTION 
There are many causes of inflation in a de-
veloping economy like Nigeria. The calcula-
tion of monthly inflation rates (MIR) and 
their predictions are by no means easy, yet 
there is the continual need of being able to 
predict them for effective monitoring and 
control of an ailing economy. The decision 
making bodies of Businesses in Nigeria of-
ten require the regular predictions of the 
MIR for effective control and avoidance of 
economic pitfalls. The problem pertaining 
to effective prediction of inflation rates of 
economies around the world has “grasped” 
the attention of many experts since the last 
three decades. The notable ones are (Engle, 
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crease in the value of money. It is highly 
affected by interrelated economic, social, 
political and even psychological factors. 
These factors interact with each other in a 
complicated manner. Forecasting inflation 
is one of the more important, but difficult, 
exercises in macroeconomics. Many differ-
ent approaches have been suggested. Such 
approaches include the works of Ang et al 
(2007), Atkeson and Ohanian (2001), 
Groen et al (2010), Stock and Watson (1999) 
and Stock and Watson (2008). Maku and 
Adelowokan (2013) examined the determi-
nants of inflation rate, amidst macroeco-
nomic fluctuations in Nigeria between a 
decade after independence 1970 and 2011. 
 
Their study employed a partial adjustment 
of autoregressive model and it indicated 
that fiscal deficit and interest rate exert de-
celerating pressure on dynamics of inflation 
rate in Nigeria. While, other macroeconom-
ic indicators such as real output growth rate, 
broad money supply growth rate, and previ-
ous level of inflation rate further exert in-
creasing pressure on inflation rate in Nige-
ria. They concluded that there is significant 
adjustment process of the dynamics of in-
flation rate in Nigeria, while real output 
growth rate and fiscal deficit are significant 
determinants of inflation rate in Nigeria. 
In Statistics and Economics, a filter is simp-
ly a term used to describe an algorithm that 
allows recursive estimation of unobserved, 
time varying parameters, or variables in the 
system. Ordinarily, it is different from fore-
casting in that forecasts could be made far 
into the future; whereas filtering obtains 
estimates of “unobservables” for the same 
time period as the information set (i.e. it 
allows extrapolation for regular albeit futur-
istic time lags). The Kalman filter, first de-
veloped by Kalman (1960), is a discrete, 
recursive linear filter, and was developed for 

use in aerospace engineering applications; it 
was used in the Apollo program in 1960 
(Grewal and Andrews, 2010) and subse-
quently adopted by statisticians and econo-
metricians. The basic idea behind the filter is 
simple - to arrive at a conditional density 
function of the unobservables using Bayes’ 
theorem, one needs the functional form of 
relationship with observables, an equation of 
motion and assumptions regarding the distri-
bution of error terms. The filter uses the cur-
rent observation to predict the next period’s 
value of unobservable and then uses the real-
isation next period to update that forecast. 
The Linear Kalman filter is optimal (i.e. with 
minimum Mean Squared Error (MSE)) if the 
observed variable and the noise are jointly 
Gaussian. The use of Kalman filtering in es-
timation and modelling by researchers is on 
the increase in the last couple of decades; 
noteworthy are the works of Bocquet and 
Sakov (2012), Bocquet (2011) and Hunt et al 
(2007). The structTS is a “stats” function 
used for fitting basic structural time series 
models (Harvey, 1989) to univariate varia-
bles. It is quite reliable and fast, and is hence 
used as a benchmark in comparisons of Uni-
variate Time Series (UTS) models; it is the 
model to “beat” if any predictor happens to 
be a candidate for univariate prediction of 
“latent” variables. 
 
Structural Model for a Time Series 
(structTS) 
According to Harvey (1989), a structural 
time series model is one which is set up in 
terms of components which have a direct 
interpretation. A univariate structural model 
is not intended to represent the underlying 
data generation process. Rather it aims to 
present the “stylised facts” of a series in 
terms of a decomposition into components 
such as trends, seasonal and cycle. These 
quantities are of interest in themselves. Fur-
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thermore, they highlight the feature of a 
series which must be accounted for by a 
properly formulated behavioural model. 
Prediction from a univariate model is naïve 
in the sense that it is just an extrapolation of 
past movements. Nevertheless, it is often 
quite effective and it provides a yardstick 
against which the performance of more 
elaborate models may be assessed. Usually, 
any attempts to capture a data generation 
process will “amount” to, using a sample of 
the observed data to derive a model which 
will, at least, “perform” equally well as the 
StructTS, in the sense that it also captures 
the features of the data generation process, 
at least, as much as StructTS does. Also the 
derived model, should enable us to; esti-
mate parameters, using any statistical tech-

nique (e.g. method of maximum likelihood), 
make predictions and construct confidence 
intervals for forecasts made from it, derive 
its refinement or generalization (i.e. if it ex-
ists), carry-out statistical tests to check its 
“adequacy” for the data generation process. 
 

MATERIALS AND METHODS 
The Algorithm for Continuous Forecast-
ing of Inflation Rates through Kalman 
Filtering  
With the assumption that the state of the 
monthly inflation rate (MIR) at a time t 
evolved from the former (i.e. last month’s) 
rate that has the time (t-1) according to the 
model; 
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Where; is the state vector containing the 
terms of interest for the MIR system at 

time, t, is the effect of a “unit” monthly 

attempts towards controlling the MIR, 
contains the model errors and noises, per 
month, as such, it possesses a multivariate 
Gaussian distribution (with mean zero) and 
its pertinent covariance matrix can be de-

noted by , is the state transition ma-
trix, at time t, “capturing” the transition that 

took place between the and  time 

periods, is the control input matrix, 
since the attempts to control the MIR 

“comes” in various guises, the coefficients 
for the magnitude of each attempts are in 

this matrix. With respect to equation (2); 
is the vector of n observations (i.e. measure-

ments of MIR), is the transformation 
matrix that maps the state vector parameters 

into the measurement domain (MIR), is 
the vector containing the noise terms associ-
ated with each measurement in its vector. 
Like the process noise, the measurement 
noise is also assumed to be Gaussian distrib-
uted with zero mean and covariance matrix

. 
The model dynamics for our discrete time 
MIR system is simplified by setting 
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this simplification is borne out of our ina-
bility to identify and quantify all probable 

attempts at making possess the barest 
minimal value, further equation (3) can also 

be interpreted to mean that all attempts to 

control MIR (i.e. ) towards a desirably 
“low” value is fruitless. However, with n ob-
servations, the system reduces to 

                                                             

                                                           

                                                                                  

With  (i.e. n x n matrices), 

 (i.e. a column vec-

tor) and ,  and 

. After the first transition, 
equation (2) remains as it is but equation (4) 
would “reflect” the transition and the system 
becomes 

                                                          

                                                                                 

With , 

and . By assuming that 

 contains all the smooth 

and filtered observations, then we can esti-

mate the best true state of  that mini-
mizes the variance (or mean squared error) 

according as whether is unbiased (or bi-
ased) respectively, such that  

                                  
Where the superscript T is for transpose. At 
the beginning (i.e. at time t = 0), the initial 

information is supplied and used to estimate 

and its allied variance. That is 
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Armed with equation (7), we attempt to predict  through 

                                                      
The resulting error will be 

                              
Which leads us to the covariance 

                                   
We continue by predicting the next observation as follows; 

                                                           
And 

                          
Continuing in this fashion, we later forcasted from (t – 1) to t as follows; 

                                  
Consequently; 

                             
Hence the model for predicting our observations will be; 

                                                             
With 

                                                     

The pseudo-Bayesian explanation of the estimated state variable,  (posterior), goes thus; 
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The resulting error will be 

           (10) 
Which leads us to the covariance 

          (11) 
We continue by predicting the next observation as follows; 

             (12) 
And 

         (13) 
Continuing in this fashion, we later forcasted from (t – 1) to t as follows; 

          (14) 
Consequently; 
 

           (15) 
Hence the model for predicting our observations will be; 

             (16) 
With 

               (17) 

The pseudo-Bayesian explanation of the estimated state variable,  (posterior), goes thus; 

              (18) 

Where the; prior is ,  Kalman gain is , innovation is 

 and . Consequently, the posterior  
and pertinent analysis are as follows:  

                 (19) 
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                                                                                                                                       (20) 

     
                                                                                                                                  (21) 
The pertinent covariance then becomes 

 
                                                                                                                                                                (22) 

Where .  

The following conditions, through the Kalman gain ( ), will enable us to minimize the 
total variance:  

1. Let us start by first stating that (Faragher, 2012);          
                                                                                23) 
2. As shown in Harvey and Pierse (2012) by putting equation (23) into (22) we have;  

                                              (24) 

The interpretation of Kalman gain ( ) when ,  
 
This implies that by equation (18); 

           (25) 

And hence;  

              (26) 
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Consequently; If  is large, has a 

larger weight, in comparison with .  
The algorithm will take one through the 
following stages:  
1. Build the pertinent model. 
2. Start-up the process by initializing the 
appropriate ‘variables’. 

3. Start iterating using the ‘observed’ as im-
petus as you go on. 
 

RESULTS AND DISCUSSION 
Illustrative Example 
Here, we shall illustrate, using the data on 
the Nigerian economy, the monthly inflation 
rates of the economy between 2011 and 
2015 are plotted in figure 1 below. 
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Figure 1: Showing the ordinary plot of the monthly inflation rates from January, 2011 
to June, 2014 (Source: Central Bank of Nigeria (CBN) “FULL REPORT”, 
2014). 

Figure 2: Showing the plot of the structural time series (structTS) model for the 
monthly inflation rates. 
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Figure 3: Showing the; “dots” plot of the observed monthly inflation rates, structur-
al time series model plot and the Kalman filtering prediction.  

Note that the Kalman filtering predictions plot superimposes itself over the structural time 
series model plot. Which means that it predicts the monthly inflation rates “efficiently”.  

Figure 4: Showing the normality of the residuals obtained when Kalman Filtering 
was used to predict the monthly inflation rates. 
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Figure 5: The normality of the residuals after structTS has been used as predictor 
for the observed monthly inflation rates.  

Figure 6: Showing the normal qq() plot of the residuals when Kalman Filtering was 
used to predict the observed monthly inflation rates. 
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Figure 7: Showing the normal qq() plot of the residuals when the structTS was used to 
predict the observed monthly inflation rates. 

Figure 8: The superimposing of the StructTS and Kalman filtering plots for easy 
comparison of their performances.  
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DISCUSSION AND  
CONCLUSION 

Figure 1 contains ordinary (dot) plot of the 
monthly inflation rates from January, 2011 
to June, 2014, the performance of the struc-
tural time series plot, for the data, is con-
tained in Figure 2. The figure 3 shows that 
the performance of Kalman filtering (fkf) 
equals that of the structural time series, 
hence the diagrammatic representation 
(Figure 3) ends up in a superimposition. 

Figures 4 and 5 further show that the respec-
tive residuals are both normally distributed, 
but whilst the mean for the Kalman fitering 
model is zero (0) that of the structural time 
series model has the mean at 1.0 which gives 
an incline that the Kalman Filtering model 
gives a better fit the structural time series 
model globally, this fact is adequately but-
tressed by the qq-plots of figures 6 and 7. In 
order to show a numerical illustration, an-
other data from the source of the plot in fig-
ure 1 was taken and by superimposing the 
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Figure 9: The normal QQ plot of Residuals between the observed inflation rates and 
the results of Kalman filtering showing how close to “perfection” the fit is. 

Figure 10: The normal QQ plot of Residuals between the observed inflation rates 
and the results of StructTS. 
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performance plots of both models, figure 8 
results which shows that the Kalman filter-
ing model fits the data better than the struc-
tural time series model. The respective qq-
plots of figures 9 and 10 collectively show 
that the Kalman filtering model is better. In 
order to complete this diagnostics and offer 

numerical evidences, the following set of 
codes give the channel through which the 
respective Akaike Information Criteria (AIC) 
values for the two models can be obtained. 
That is for the structural time series model, 
by giving the command;     

23 

> library(car) 
> x1<-fitted(fit.stats) 
> x2<-ts(fkf.obj$att[1, ], start = start(y), frequency = frequency(y)) 
> lm_fit<-lm(y~x1)  
> summary(lm_fit)                                 
To R (preferably version 3.1.1), the result obtained was; 
Call: 
lm(formula = y ~ x1) 
 
Residuals: 
     Min       1Q             Median       3Q           Max  
-2.46529   -0.96163   -0.03377      1.15237   3.04282  
Coefficients: 
                   Estimate   Std. Error   t value   Pr(>|t|)     
(Intercept)  -0.4907     1.0030        -0.489    0.638     
x1                1.0573      0.0637       16.599   1.75e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 1.799 on 8 degrees of freedom 
Multiple R-squared:  0.9718,    Adjusted R-squared:  0.9683  
F-statistic: 275.5 on 1 and 8 DF,  p-value: 1.753e-07 

Since the closer the adjusted R-squared (i.e. 
0.9683) to 1, the better the fit of the model 
to the data and also the smaller the p-value 
(i.e. 1.753e-07) the more reliable the sum-
mary (i.e. test), then this result implies that 
the structural time series model can be used 
to model economic inflation data and that 

this result is reliable. Now, if the command 
pertaining to the Kalman filtering model is 
given, that is by merely using x2 in-place of 
x1 in the code; lm_fit<-lm(y~x1), the result 
becomes; 
Call: 

lm(formula = y ~ x2) 
Residuals: 
    Min      1Q           Median      3Q          Max  
-0.5868   -0.3983    -0.1727      0.1715    1.5226  
Coefficients: 
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This result also shows that the Kalman fil-
tering model is better than the structural 
time series model, considering the fact that 
the adjusted R-squared (i.e. 0.9959) is closer 
to 1 than the adjusted R-squared for the 
structural time series model. Also, the p-
value here (i.e 4.833e-11) is smaller than the 
one for the structural time series model.  
A more convincing numerical evidence is 
the calculation of their AIC, which for the 
Kalman filtering model will be obtained by 
giving the command; AIC(lm_fit), to R, to 
obtain the result; 23.42674. By repeating the 
same process for the structural time series 
model, the result is 43.89233. And since the 
model with the lower AIC is better than the 
other model for the data, then the Kalman 
filtering model is obviously better than the 
structural time series model for fitting eco-
nomic inflation data. 
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