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of the real, or the integers on another object 
usually a manifold. the mathematical notions 
of a dynamical system serves to depict the 
flow of causation from past into future 
(Kalman 1960). These models are considered 
and used in physics, engineering, financial 
and economic forecasting as an abstract 
summary of experimental data. 
 
The general forms for dynamical systems are: 

ABSTRACT 
Most real world situations involve modelling of physical processes that evolve with time and space, 
especially those exhibiting high variability. Such events that have to flow with time or space are called 
dynamical systems. The mathematical notions of a dynamical system serves to depict the flow of cau-
sation from past into future (Kalman 1960). In this study, Markov model which is a signal model based 
on the Markovian property with state space approach was adopted for the analysis of dynamical sys-
tems. The Nigerian monetary exchange rate data was used in the application with the use of R statisti-
cal software package. The study incorporated the Chapman-Kolmogorov equation in the construction 
of absolute limiting distribution of the system via the state variables. The procedure gives an easy and 
effective means of analysing complex and time varying dynamical systems. The study showed that the 
Nigerian monetary exchange rate is ergodic with stationary probability distribution. 
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 INTRODUCTION 
Most real world situations involve model-
ling of physical processes that evolve with 
time and space, especially those exhibiting 
high variability. Such events that have to 
flow with time or space are called dynamical 
system. Dynamical system is a means of 
describing how one state develops into an-
other state over the course of time. Techni-
cally, a dynamical system is a smooth action 
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If the right hand sides of equations (1) and 
(2) are nonlinear functions, then we have 
nonlinear dynamical system. The range of 
behaviours available to nonlinear systems is 
much greater than that for linear systems. 
These systems are characterized by a lot of 
uncertainties which need to be well cap-
tured. 
 
According to Meiss (2007), a dynamical sys-
tem consists of an abstract phase space or 
state space, whose coordinates describe the 
state at any instant and a dynamical rule that 
specifies the immediate future of all state 
variables, given only the present values of 
these same state variables. Mathematically, a 
dynamical system is described by an initial 
value problem. The implication is that there 
is a notion of time and that a state at one 
time evolves to a state or possibly a collec-
tion of states at a later time. These states 
can be ordered by time, and time can be 
thought of as a single quantity. Dynamical 
systems are mathematical objects used to 
model physical phenomena whose state (or 
instantaneous description) changes over 
time. These models are used in financial and 
economic forecasting, environmental mod-
elling, medical diagnosis, industrial equip-
ment diagnosis, and a host of other applica-
tions. 
 
Modelling and estimation of dynamical sys-
tems has been of great interest among re-
searchers. Nonlinear Dynamical System be-
haviours are in different forms which can 
range from very simple periodic solutions 
to complicated "chaotic" behaviour 
(Devaney, 1989). Mowery (1965) and Neal 
(1968) used the methods of least squares to 
minimize the error in nonlinear estimation. 

Other researchers used Gaussian probability 
density functions in modelling and estimat-
ing nonlinear systems. Lainiotis (1971) used 
Gaussian probability density functions to 
predict the most likely values of the state 
variables based on the current values of the 
output and the covariance of the state esti-
mation error. Hall et al (2012) used Gaussian 
processes as a predictive model in modeling 
nonlinear dynamical systems. In most dy-
namical systems which describe processes in 
engineering, physics and economics, stochas-
tic components and random noise are in-
cluded. The stochastic aspects of the models 
are used to capture the uncertainty about the 
environment in which the system is operat-
ing and the structure and parameters of the 
models of physical processes being studied 
(Shali, 2012). Most dynamical phenomena in 
nature therefore, can be regarded as stochas-
tic processes whose future behaviour can be 
modelled on the present state and not on the 
past. By treating them as such, meaningful 
results both in the theory and application 
may be obtained. Such processes are referred 
to as Markov processes. 
 
Markov processes are random (or stochastic) 
processes whose future behaviour cannot be 
accurately predicted from its past behaviour 
and which involve random chance or proba-
bility. Markov processes are probabilistic 
models for describing data with a sequential 
structure. A Markov process is useful for 
analyzing dependent random events; that is, 
events whose likelihood depends on what 
happened last. A coherent mathematical the-
ory of Markov processes in continuous time 
was first introduced by Kolmogorov 
(Dynkin, 2006). Important contributions to 
this class of stochastic processes were made 
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by Feller (1971). A Markov process is a sto-
chastic system for which the occurrence of 
a future state depends on the immediately 
preceding state. The transition probability is 
therefore a conditional probability for the 
next state given the current state. In the the-
ory of Markov processes, it is usually a 
question of dealing, not with a single ran-
dom function, but with a family of such 
functions, corresponding to all the possible 
initial instant of time and all the possible 
initial states. 
 
The theory of Markov processes has devel-
oped rapidly in recent years. The properties 
of the trajectories of such processes and 
their infinitesimal operators have been stud-
ied, and intimate connections discovered 
between the behaviour of the trajectories 
and the properties of the differential equa-
tions corresponding to the process (Dynkin, 
2006). According to Aoki (1994, 1996), dy-
namic behaviour can be modelled as dis-
crete time or continuous time Markov 
chains. Markov chain is a Markov processes 
with finite state spaces. Time evolution of 
the probabilities of states of Markov chains 
can be described by accounting for proba-
bility flows into and out of the states 
(Davies, 1993; Durrett, 1991; Eckstein and 
Wolpin, 1989). These can be handled by 
Chapman-Kolmogorov equations in sto-
chastic processes (Whittle, 1992; Bailey, 
1984; Tomasz et al., 1999; Stark and Woods, 
1986). The Chapman-Kolmogorov equa-
tions supply both necessary and sufficient 
conditions for the existence of transition 
densities. Akintunde et al (2008) proposed a 
modified Chapman-Kolmogorov equation 
which was seen to be efficient. This work 
therefore considered the analysis of nonlin-
ear dynamical systems using the basic con-
cept of Markov process which are those of 
a state and state transitions with the Chap-

man-Kolmogorov equation. The Markov 
model is a signal model based on the Mar-
kovian property which implies that given the 
present state, the future of a system is inde-
pendent of its past. A Markov process is in a 
sense the probabilistic analog of causality 
and can be specified by defining the condi-
tional distribution of the random process 
(Agwuegbo et. al (2014).  
 

MATERIALS AND METHODS 

Let  be the realization from a dynamical 
system. The state of  a dynamical system

 is the probability distribution of  the 
states, and knowledge of  the distribution 
determines uniquely probabilistically how the 
system evolves with time in the future. By 

the central limit theorem,  may be con-
sidered to follow a normal distribution. A 
convenient way to understand the central 
limit theorem is by defining the independent 
identically distributed random variables 

 with a common distribution  as 
a random walk. One of  the simplest stochas-
tic processes is a simple random walk. A 
mathematical formulation of  a path that 
consists of  a succession of  the random steps 
is by defining it as a random walk. 
 
Random walks explain the observed behav-
iour of the random process and thus serve as 
a fundamental model for the recorded sto-
chastic activity. Simple Random walk can be 
defined as the sum of a sequence of random 
variables. The simple random walk process 
arises in many ways. The random walk can 
be thought of as the path of a drunkard, 
walking along a long road who randomly 
takes either one step forward or one step 
backward at regularly spaced times. An alter-
native picture of random walk involves the 
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motion of a particle which inhabits the set 
of integers and which moves at each step 
either one step to the right with probability 

 or one step to the left with probability 

. The directions for the different steps 

are independent of each other. The random 
walk in a discrete case has three (3) values -
1,0,+1 which constitute the generating func-
tion as a trinomial distribution. Then the de-
fining condition of the random walk is 

38 

Where  and  are independent and 
identically distributed random variables 
each taking the values-1 with probability q 

or the value 0 with probability r or the value 

+1 with probability p. If , then (3) 
becomes 

and  is the distribution of the partial sums of the random variables. The distribution of 

 for finite n can therefore be determined, given the assumption about  as 

For the description of the system, the se-

quence  can further be be classified as a 
Gaussian random walk to enumerate all 

possible states of the system, where  are 
jointly normally distributed. The importance 
of the normal distribution is due largely to 
the central limit theorem.  

In our case  is the realization from the 
stochastic process. Given a stochastic pro-

cess, we can assign according to some rule, 

to each of its function  a new function 

 known as transformation of  into 

.In this work, let  be the set consisting 
of the relative changes as the dynamical sys-
tem evolve through time. That is 

 

J. Nat. Sci. Engr. & Tech. 2017, 16(1): 35-49 



MARKOV MODELS FOR THE ANALYSIS OFDYNAMICAL... 

This provides a transformation of the origi-
nal realization of the system.  
 
We define a trinomial distribution for the 

various values of .Let  be the state of 

.  equals +1 the with probability  if 

the value of is positive,  is -1 with 

probability  if the value of is negative 

and  is 0 with probability  if the value 

of is zero. That is  

39 

Binomial and trinomial processes are simple examples for general random walks that is sto-

chastic processes  satisfying  

 

where  is independent of  
which are independent identically distribut-
ed (i.i.d.) is referred to as a random walk. 
The increments which have a distribution 

of a real valued random variable,  can 
take a finite or countable infinite number of 

values; but it is also possible for  to take 
values out of a continuous set. Such ran-
dom walks can be constructed by assuming 
identically, independent and normally dis-
tributed increments. By the properties of 

the normal distribution, it follows that  

is -distributed for each . If 

 and  is finite, it holds 

approximately for all random walks for  
large enough. Random walks are processes 
with independent increments (Franke et al, 
2004) and processes which are also Markov 
processes.  
 
The system can be in any of the enumerable 

sequence of states .The sequence of 

random variables  forms a discrete 

time Markov chain if for all  
and all possible values of the random varia-

bles, one has (for  that 
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The expression on the right hand side of 
the equation (9) is referred to as one step 
transition probability and gives the condi-
tional probability of making a transition 

probability from state  at step  

to state  at  step in the process. If it 

turns out that the transition probabilities are 

independent of , it turns out to what is 
referred to as a homogeneous Markov chain 
which is defined as 

40 

which gives the probability of going to state 

 on the next step, given that it is current-

ly at state . These chains in (10) are such 
that their transition probabilities are station-

ary with time and the probability  step 

into the future depends only upon  and 
not upon the current time; it is expedient to 

define the  transition probabilities 
as 

From the Markov property given in (9), it is easy to establish the following recursive formu-

la for calculating : 

 

Generalizing the homogeneous definition for the multistep transition probability given in 
(11), one can now define 
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Which gives the probability that the system 

will be in state  at step , given that it 

was in state  at step , where . 

Equation (13) may be expressed as the sum 
of probabilities for all these mutually exclu-
sive intermediate states, that is, 

41 

For . (14) must hold for any 
stochastic process since one is considering 
all mutually exclusive and exhaustive possi-

bilities. From the definition of conditional 
probability, one may rewrite (14) as 

Invoking the Markov property and observing that 

 
 
And applying this to (15) and making use of the definition in (13), then one arrives at 

 

For  Equation (16) is called the Chapman-Kolmogorov equation for discrete 
time Markov processes. If (16) is a homogeneous Markov chain, then (11) will have the re-

lationship . 
In a completely analogous way, a continuous time Markov chain can define as 

 

Where  is the position of the particle at time  The Chapman-Kolmogorov 

equation for three successive instant of time  for the continuous time chain is 
given as 
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In matrix form, (18) is written as  

 
which is the transition probability matrix of the Markov chain  
Further, (19) is identified as a limit and can be defined as 

 
(20) is called the forward Chapman-Kolmogorov equation for the continuous time. Consid-
ering the case where the continuous time Markov chain is time homogeneous or stationary, 

the transition probability function is estimated as  

 
The sufficiency of (21) is the consequences for both Markov and stationarity assumptions. 
The forward Chapman-Kolmogorov equation for the stationary process is defined as 

 

 

 

 

 

 

 
(22)is for a continuous process. The Chapman-Kolmogorov equation indicates that the 

transition probability can be decomposed. And in matrix form can be defined as 
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Stationary Analysis and Absolute Proba-
bilities 
At the long run the system settles down to a 
condition of stationary statistical equilibri-
um in which the state occupation probabili-
ties are independent of the initial condi-
tions. Dynamical system can be considered 
as a memory-less process because the ran-
domness involved had introduced a noise 
component which accounted for the irregu-
lar behaviour of the system. As a result of 

this, the system may be considered to satisfy 
the Markovian property. The absolute proba-
bility distribution converges to a limiting dis-
tribution independent of the initial distribu-
tion, and the chain is said to be ergodic. Er-
godicity defines the limiting values or steady 
state probabilities such that the actual limit-
ing distribution, if it exists can be determined 
quite easily. The equation for the steady state 
distribution can be obtained as: 
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If a Markov chain is ergodic, then the limiting distribution is stationary and 

 

where  and 

 

RESULTS AND DISCUSSION 
The dynamics discussed in this work was 
used to model the Nigerian monetary For-
eign exchange rates. Monthly Data of the 
Exchange of Nigerian Naira to US dollar 
covering a period of thirty four (34) years, 
from 1980 to 2013 was considered and a 
direct analysis was accomplished by the use 
of R statistical software. 
 
Exploratory Data Analysis 
The data were explored with the use of 
some descriptive statistics (Table 1), station-
arity or unit root tests (Table 2) and graphs 
(Fig. 1, 2 and 3). Table 1 gives the descrip-
tive statistics values. Fig. 1 shows that there 
are no outliers in the data set and Fig. 2 in-
dicates that there is a dramatic jump in the 

system. The realisation plot (Fig. 3) shows an 
indication that the variable is non-stationary 
hence a realization from a nonlinear dynam-
ical system. It revealed a dramatic jump in 
1999 and that the monthly exchange rate of 
Nigerian Naira to United States Dollar was 
highly volatile. Tables 2 which consist of the 
Augmented Dickey-Fuller and the Phillips-
Perron Tests for Stationarity also confirmed 
that the series is non-stationary. The dra-
matic jump in 1999 can be attributed to the 
political transition from military to demo-
cratic government which brought about 
some changes in policies. Fig. 4 indicates 
continuous sample paths of the state spaces. 
It shows that the Nigerian monetary ex-
change rate follows a random walk model. 
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Table 1: Descriptive Statistics of the Exchange Rate Data 

Statistics Exchange Rate Data 
Length 396 
Minimum 0.5314 
Maximum 164.6000 
1st Quartile 4.286 
3rd Quartile 127.2 
Mean 60.56 
Median 21.89 
Sum 23981.95 
SE Mean 3.0684 
Variance 3728.347 
Standard deviation 61.06 
Skewness 0.4093 
Kurtosis -1.6229 

Table 2: Augmented Dickey-Fuller and Phillips-Perron Tests for Stationarity of the 
               data 

Unit Root Test Hypothesis Test Statistics p-value Decision 

Augmented 
Dickey-Fuller 

H0: The Series is Non Stationary 
H1: The Series is Stationary -2.1434 0.5167 Accept Ho 

Phillips-Perron H0: The Series is Non Stationary 
H1: The Series is Stationary -13.8437  0.3357 Accept Ho 

Figure 1: Boxplot of the Exchange Rate Data 
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Figure 2: Histogram of the Exchange Rate Data 

Figure 3: Realisation plot of the Exchange rate of Nigerian Naira to US Dollar 
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Stationary Analysis 
The generating function can therefore be 
given as trinomial distribution from the 

Random Walks. This gives the initial proba-
bility of the state of the process as 

46 

Figure 4: Continuous Sample path of Nigerian Exchange rate to US Dollar  

 

 
 
and the transition probability matrix given as 
 

 
With the Chapman-Kolmogrov equation, the stationary probability distribution of the sys-
tem can be obtained. Using the Chapman – Kolmogorov relation 

 
The absolute Probabilities  are given as 

 

 

where   is the n-step transition probability matrix given as 
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Using the Chapman-Kolmogorov equation 
recursively, the distribution converges to 
the fixed probability vector which equals 
the absolute or stationary probability distri-

bution of the system at time, . This is as 

shown in Table 3. Therefore the steady state 
probability distribution of the system which 
does not depend on the initial probability 
distribution is  

47 

 

and  is the initial probability distribution. 

 

Table 3: Absolute Probabilities of the State of the Systems at time,  

n 
   

1 0.3655 0.1319 0.5027 
2 0.3303 0.1555 0.5143 
3 0.3142 0.1727 0.5132 
4 0.3059 0.1853 0.5090 
5 0.3012 0.1943 0.5047 
6 0.2982 0.2009 0.5012 
7 0.2962 0.2056 0.4985 
8 0.2949 0.2090 0.4965 
9 0.2939 0.2115 0.4950 
10 0.2932 0.2133 0.4940 
11 0.2927 0.2146 0.4932 
12 0.2924 0.2155 0.4927 
13 0.2921 0.2162 0.4923 
14 0.2920 0.2167 0.4920 
15 0.2918 0.2171 0.4918 
16 0.2917 0.2173 0.4917 
17 0.2917 0.2175 0.4916 
18 0.2917 0.2177 0.4916 
19 0.2916 0.2179 0.4915 
20 0.2916 0.2179 0.4915 
21 0.2916 0.2179 0.4915 
22 0.2916 0.2179 0.4915 
23 0.2916 0.2179 0.4915 
24 0.2916 0.2179 0.4915 
25 0.2916 0.2179 0.4915 

J. Nat. Sci. Engr. & Tech. 2017, 16(1): 35-49 



A.A. AKINTUNDE, S.O.N AGWUEGBO AND O.M. OLAYIWOLA 

This implies that the value of Nigerian Nai-
ra will at the long run reduce as compared 
to the US Dollar with a probability of 49%. 
This dynamics can be better viewed with 
the use of high frequency data such as 
weekly, daily or even hourly data of the ex-
change rate. 
 

CONCLUSION 
Dynamical systems are very common and 
are considered to be stochastic processes by 
virtue of their own mechanism. The study 
considered dynamical system as a random 
process with independent increments and as 
a result can be modelled with Markov 
chains models. The system was therefore 
viewed as a Random Walk from the state 
spaces of the Markov process. The Chap-
man-Kolmogorov equation gave a straight 
forward iteration which converges to the 
stationary distribution of the process. The 
study shows that the Nigerian exchange rate 
to US Dollar is ergodic. 
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