SCREENING FOR HEAVY MOLECULAR WEIGHT HYDROCARBON UTILIZING BACTERIA FROM OIL IMPACTED, NON OIL IMPACTED SOIL AND NATURAL DEPOSITS

Authors

  • S. A. BALOGUN
  • A. S. AYANGBENRO
  • S. O. KAREEM
  • O. S. SOJINU

DOI:

https://doi.org/10.51406/jnset.v12i1.1276

Keywords:

Biodegradation, Bitumen, Burkholderia, 2, 6-Dichlorophenol Indophenol (DCPIP), Hydrocarbon, Pseudomonas, Serratia.

Abstract

Control and treatment of hazardous effects of heavy molecular weight oil (bitumen) pollution are essential in contaminated soil. This study involved the isolation and screening of microorganisms capable of utilizing heavy molecular weight hydrocarbon from oil impacted, non oil impacted soil and natural deposits of bitumen. Total heterotrophic bacterial counts in the samples ranged from 1.4 × 105 CFU/g to 2.0 × 106 CFU/g. Total oil utilizing bacterial counts varied from 1.5 × 104 CFU/g to 3.6 × 105 CFU/g. Isolates were identified using API 20E kit. They belong to the genera Burkholderia, Pseudomonas, and Serratia. Degradation efficiency of the isolates on Premium Motor Spirit (PMS), Dual Purpose Kerosene (DPK) and Low Pour Point Fuel Oil (LPFO) were carried out by a colorimetric rapid screen test using 2, 6-dichlorophenol indophenol (DCPIP) reduction test which was monitored by measuring absorbance at 600 nm at every 24 hrs for 120 hrs. Order of ability of the isolates to degrade PMS: P. aeruginosa > P. mendocina > P. borbori > S. rubidae > P. cichorii > B. cepacia while for DPK is P. cichorii > P. borbori > S. rubidae > P. mendocina > B. cepacia > P. aeruginosa. Ability to degrade LPFO: P. cichorii > P. borbori > P. aeruginosa > P. mendocina > B. cepacia > S. rubidae. 

References

Adebusoye, S.A., Ilori, M.O., Amund, O.O., Teniola, O.D., Olaope, S.O. 2007. Microbial degradation of petroleum hydrocarbons in polluted tropical stream. World Journal of Microbiology and Biotechnology 23: 1149-1159.
Balogun, S.A., Fagade, O.E. 2008. Screening for surface-active agent producing bacteria from diesel oil polluted tropical soil. World Applied Sciences Journal 3:930-933.
Balogun, S.A., Fagade, O.E. 2010. Emulsifying bacteria in produce water from Niger Delta, Nigeria. African Journal of Microbiology Research 4:730-734.
Bidoia, E.D., Montagnolli, R.N., Lopes, P.R.M. 2010. Microbial biodegradation potential of hydrocarbons evaluated by colorimetric technique: a case study. In: Current research, technology and education topics in applied microbiology and microbial biotechnology. Mendez-Vilas, A. (Ed), pp. 1277-1288. FORMATEX, Badajoz, Spain.
Bogan, B.W., Lahner, L.M., SulliVan Beilen, W.R., Paterek, J.R. 2003. Degradation of straight chain aliphatic and high – molecular weight polycyclic aromatic hydrocarbons by a strain of Mycobacterium austroafricanum. Journal of Applied Microbiology 94: 230-239.
Cappello, S., Caneso, G., Zampino, D., Monticelli, L., Maimone, G., Dnearo, R., Tripod, B., Troussellier, M., Yakimov, N., Giuliano, L. 2007. Microbial community dynamics during assays of harbour oil spill bioremediation: a microscale simulation study. Journal of Applied Microbiology 102: 184-194.
Chikere, C.B., Okpokwasili, G.C. , Chikere, B.O. 2009. Bacterial diversity in tropical crude oil-polluted soil undergoing bioremediation. African Journal of Biotechnology 8: 2535-2540.
Connan, J.1984. Biodegradation of crude oils in reservoirs. In: Advances in petroleum geochemistry. Brooks, J. and Welte, D. H. (Eds.), pp. 299–335. Academic Press, London.
Dally, K., Dixon, A.C., Swanell, R.P.J., Lepo, J.E. and Head, I.M. 1997. Diversity among aromatic hydrocarbon-degrading bacteria and their meta cleavage genes. Journal of Applied Microbiology 83: 421-429.
Gordon, D. 2012. Understanding unconventional oil. Carnegie Endowment for International Peace, pp. 3-13. www.carnegieendowment.org/files/unconventional_oil.pdf.
Gruson, J., Gachadouat, S., Maisonnier, G. and Saniere, A. 2005. Prospective analysis of the potential non-conventional world oil supply: tar sands, oil shales and non-conventional liquid fuels from coal and gas. European Commission Joint Research Centre (DG JRC). Technical Report EUR 22168 EN, pp. 8-10. http://ftp.jrc.es/EURdoc/eur22168.en.pdf.

Head, I.M., Jones, D.M., Larter, S.R. 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426: 344-352.
Jennings, M., R.S. Tanner, 2000. Biosurfactant producing bacteria found in Contaminated and Uncontaminated soils. Proceedings of the 2000 Conference on Hazardous Waste Research, pp. 299-306.
Joshi, R.A., Pandey, G.B. 2011. Screening of petroleum degrading bacteria from cow dung. Research Journal of Agricultural Sciences 2: 69-71.
Jyothi, K., Surendra Babu, K., Nancy Clara, K., Amita Kashyap. 2012. Identification and isolation of hydrocarbon degrading bacteria by molecular characterization. Helix 2:105-111.
Kaplan, C.W., Kitts, C.L. 2004. Bacterial succession in a petroleum land treatment unit. Applied Environmental Microbiology 70: 1777-1786.
Meyer, R.F., Attanasi, E.D., Freeman, P.A. 2007. Heavy oil and natural bitumen resources in geological basins of the world: U.S. Geological Survey Open-File Report 2007-1084, pp. 1-36. http://pubs.usgs.gov/of/2007/1084/
Nwachukwu, J.I. 2003. Exploitation of the bitumen deposits of Nigeria. In: Prospects for investment in mineral resources of southwestern Nigeria. Elueze, A.A. (Ed), pp. 67-74. Nigerian Mining and Geosciences Society.
Obayori, O.S., Salam, L.B., Omotayo, I.M. 2012. Degradation of weathered crude oil (Escravos Light) by bacterial strains from hydrocarbons-polluted site. African Journal of Microbiology Research 6: 5426-5432.
Okerentugba, P.O., Ezeronye, O.U. 2003. Petroleum degrading potentials of single and mixed microbial cultures isolated from rivers and refinery effluent in Nigeria. African Journal of Biotechnology 2: 288-292.
Okoh, A.I. 2006. Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnology and Molecular Biology Review 1: 38-50.
Okoh, A.I., Trejo-Hernandez, M.R. 2006. Remediation of petroleum hydrocarbon polluted systems: exploiting the bioremediation strategies. African Journal of Biotechnology 5: 2520-2525.
Pasco, N., Baronian, K.H., Jeffries, C. and Hay, J. 2000. Biochemical mediator demand—a novel rapid alternative for measuring biochemical oxygen demand. Applied Microbiology and Biotechnology 53:613-618.
Patil, T.D., Pawar, S., Kamble, P.N. , Thakare, S.V. 2012. Bioremediation of complex hydrocarbons using microbial consortium isolated from diesel oil polluted soil. Der Chemica Sinica 3:953-958.
Rahman, K.S.M., Banat, I.M., Thahira, J., Thayumanavan, T. and Lakshmanaperumalsamy, P. 2002. Bioremediation of gasoline contaminated soil by bacterial consortium amended with poultry litter, coir-pith and rhamnolipid biosurfactant. Bioresource Technology 81: 25–32.
Roy, S., Hens, D., Biswas, D., Kumar, R. 2002. Survey of petroleum degrading bacteria in coastal waters of Sunderban Biosphere Reserve. World Journal of Microbiology and Biotechnology 18:575-581.
Van Beilen Beilen, J.B. and Funhoff, E.G. 2007. Alkane hydroxylases involved in microbial alkane degradation. Applied Microbiology and Biotechnology 74: 13- 21.
Varjani, S.J., Rana, D.P., Bateja, S. , Upasani, V.N. 2013. Isolation and screening for hydrocarbon utilizing bacteria (HUB) from petroleum Samples. International Journal of Current Microbiology and Applied Sciences 2: 48-60.
Wang, G., Guo M., Chen, G. 2012. Screening and characterization of petroleum-degrading bacterium. African Journal of Biotechnology 11(45): 10388-10394.
Yoshida N, Hoashi J, Morita T, McNiven S.J, Nakamura H, Karube I. 2001. Improvement of a mediator-type biochemical oxygen demand sensor for on-site measurement. Journal of Biotechnology 88: 269-275.

Downloads

Published

2015-07-07

Issue

Section

Articles